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“Cheering people up and spreading happiness is
never trivial. In fact, it may be the least trivial thing

of all.” (Andrew W.K.)



Abstract

Forest fires in Portugal are a longstanding problem, having been exacerbated by the
effects of climate change. Being able to effectively combat wildfires requires study of
previous fires, to learn how they spread and what can be done to prevent them in the
future.

Virtual reality proposes an interesting visualisation method. It allows for an up-
close exploration of fire spreading phenomena, which when combined with the inherit
immersiveness of the medium, can prove highly educational in a way that is not easily com-
municated by simply looking at data points in a two dimensional map. Such technology
can be implemented through a game engine such as Unreal Engine.

The NOVA School of Science and Technology developed a tool dedicated to the study
of past wild fires in Portugal collected using MACFIRE, visualized through virtual reality.
It currently allows for a macro visualisation of the fire front’s movement in 10 minute
intervals.

This dissertation proposes a method for enhancing the micro visualisation of the fire,
which should have a minimal impact on the real-time performance of the final tool. These
enhancements will allow the users to obtain a better understanding of how a wildfire
spreads between trees and underbrush on a micro scale. The work carried out during
the duration of this dissertation consisted of a tool for importing landscapes into Unreal
Engine, documentation corrections, and an engine upgrade to the already existing forest
fire tool. Then, a fire spreading system was written, which allows users to create fires in
the world and watch them evolve.

This system was tested throughout multiple stages of its development, as well as
tested with a final scenario in virtual reality to stress the graphics processor. The tool’s
efficiency was evaluated through analysis of its performance, for both the processor and
the graphics card. The final API was also analysed and evaluated to show that it is ready
to be integrated into the final tool.

While the system that was developed does not directly allow the user to observe the
data from an already existing fire, it provides methods for this to be integrated into the
final tool.
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Resumo

Em Portugal há muito tempo que os fogos florestais constituem um problema, mas este
tem-se vindo a agravar ultimamente devido às alterações climáticas. O combate efetivo
aos fogos florestais exige um bom conhecimento dos fogos anteriores e do modo como
se espalharam. Só assim será possível perceber como os prevenir no futuro. A realidade
virtual propõe um método de visualização interessante que permite acompanhar de perto
o fenómeno do avançar do fogo. Quando combinada com a sua natural envolvência, a
realidade virtual torna-se muito mais eficaz do que os dados inseridos num mapa a duas
dimensões. Esta tecnologia pode ser desenvolvida através de um motor de jogo como o
Unreal Engine.

A Faculdade de Ciências e Tecnologia da Universidade NOVA de Lisboa desenvolveu
uma ferramenta para o estudo dos fogos florestais ocorridos em Portugal, utilizando a
MACFIRE e visualizando-os com recurso à realidade virtual. Esta ferramenta permite já a
macro visualização do movimento da frente de fogo com intervalos de 10 minutos.

Nesta dissertação propõe-se um método para melhorar a visualização de um fogo
numa escala micro, com um impacto mínimo no desempenho em tempo real da ferramenta
final. Estes melhoramentos permitirão aos utilizadores compreender mais facilmente o
modo como os fogos florestais avançam através de árvores e vegetação rasteira numa
escala micro.

O trabalho desenvolvido nesta dissertação consiste na criação de uma ferramenta
para importar terreno para o Unreal Engine, em correções à documentação já existente
e em atualizações da ferramenta de visualização de fogos. De seguida, desenvolveu-se
um sistema de simulação de avanço de fogos, que permite aos utilizadores criar fogos e
observar a sua evolução.

Este sistema foi testado não só à medida que foi desenvolvido, como também num
cenário final em realidade virtual para fazer um teste de stress ao processador gráfico. A
eficiência da ferramenta, tanto no processador como na placa gráfica, foi avaliada através
da análise ao seu desempenho. A API final foi analisada e avaliada de forma a demonstrar
que pode ser integrada na ferramenta final.

O sistema desenvolvido não permite a observação de dados de fogos já ocorridos, mas
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disponibiliza métodos para a sua integração na ferramenta final.

Palavras-chave: Realidade Virtual, Unreal Engine, Tempo Real, Modelação de Dados,
Visualização de Dados, Renderização 3D
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Introduction

1.1 Motivation

Wildfires cause unmitigated damage on land, devastating and heavily impacting both
human and wild life. In the year 2022, wildfires in Portugal burned more than 100
thousand hectares of land in a single month, close to 1% of total landmass[11]. This is not
an isolated incident, as wildfires are an unfortunate yearly occurrence in the country.

Understanding how the wildfires spread, as well as the impact of fire fighting tech-
niques, is paramount to being able to reduce the damage caused by a fire. This requires a
study of previous fires, which can be difficult to understand by simply looking through
discrete data points on a map, or impractical to perform field research on.

Virtual Reality (VR) is a good candidate for this problem, as it would allow one to
experience the event, from the safety of a simulated world. It would, furthermore, allow
one to observe fire spreading phenomena up close, further letting the user understand
how the environment and firefighting attempts shape the spread of a fire. While graphical
fidelity is not typically the end goal of an educational tool, it is still useful to simulate
phenomena in a convincing manner.

Since VR is a real time medium, and quite a complicated one to implement from
scratch, the project is being developed with a game engine called Unreal Engine. This
eases development in numerous ways, taking the burden of dealing with complex systems
such as physics, memory allocation, and scene optimization, away from the developer.

1.2 Context

NOVA School of Science and Technology (FCT) has been developing the SI-MORENA
project, which contains a suite of tools. One of these tools’ goals it to take data points from
existing fires and allowing the user to scrub the timeline of events. This tool also allows
one to observe the fire from many different points of view, such as from a macro scale, or
up-close from a micro one. The project utilizes VR technology to accomplish this.

The visualization tool uses georeferenced data to generate an accurate map of regions
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in Portugal, and combines data from MACFIRE to create a 3D visualization of a fire that
has occurred in the past. MACFIRE is a Geographic Information System (GIS) which
exists to assist in the modelling of the evolution of a forest fire. When a fire occurs and
first responders are sent, data is continuously collected by people in the field regarding
the current location, intensity, and number of active fire fronts. The system is also used to
log firefighting efforts, including tracking the different methods. The fire front is logged
as a set of discrete lines on a map of the afflicted area.

At the time of writing, the tool has techniques developed for interpolating the data
from MACFIRE to allow visualizing the evolution of the fire front in discrete 10 minute
time steps. It also provides an interface that allows the user to place themselves (virtually)
in a location of a forest fire, and to observe its spread. This is accomplished through the
use of rough graphics to convey the idea of the event.

The end goal of the wildfire visualization tool should be to automate as much as
possible. It should be easy to plug in data from MACFIRE, and to provide the tool with
geographical data from the affected area, ultimately allowing for a fast observation of
recent wildfire.

1.3 Problem Description

As one of the goals of the wildfire visualization tool is to educate people on the
methods in which a forest fire spreads at a macro scale, it is desirable to further improve
it to show how the fire spreads at a micro scale.

Forests are rather complicated to render due to their scale and density, therefore while
it is beneficial to improve the fidelity of the tool allow one to observe how a fire spreads in
a realistic manner, one must also be careful with the implementation. VR is performance
intensive, so shortcuts and tricks must be used to ensure that the tool behaves under real
time constraints. Ultimately, the graphical and simulation improvements proposed in this
dissertation cannot harm the educational aspect of the tool.

1.4 Contributions

The following contributions are expected from this project:

• An improved visualization of the fire spreading at a micro scale. Users should be
able to observe phenomena, such as fire spreading from tree to tree, in a convincing
manner.

• The improved fire spreading should not contradict the final data from MACFIRE.
This point ensures that the data not lose its educational value.

• The system should provide a solid foundation so that the graphical improvements
are easy to implement. While it would be preferable to also improve the graphics,

2



1.5. DOCUMENT STRUCTURE

implementing a system which is flexible enough as to not impact future work is
imperative.

• The added changes should not impact the use of the tool. This point is true for
both the performance of the tool, as well as for the educational use. Considering that
the target system is VR, it is imperative that the simulation not impact performance.

1.5 Document Structure

The document is structured as follows:

• Chapter 1 describes the context of the problem, as well as the motivation for solving
it, finishing off with the predicted contributions.

• Chapter 2 attempts to break down the problem of rendering fire and presents the
current state of fire rendering and simulation technology. Furthermore, the chapter
looks into how fire simulations are accomplished in real time interactive mediums.

• Chapter 3 discusses a possible solution to the problem, which was devised during
the study of the current algorithms.

• Chapter 4 presents the implementation that was accomplished, including elements
that were unsuccessful or unfinished.

• Chapter 5 evaluates the solution, looking at its flexibility, the viability of the different
algorithms, as well as performance testing.

• Chapter 6 concludes the dissertation by discussing the finalised project, evaluating
the work against the original stated goals, and describing possible future work.
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Related Work

Before engaging directly on the topic at hand, it is imperative that one research already
existing work to gain an understanding of current technologies and how the techniques
on display can be used to solve the problem.

The wildfire visualisation tool has been in development for a few years, thus it will be
important to look over previous work that provide the groundwork for this problem. Once
the baseline has been understood, further research into scientific journals andsimilar theses
can be done. Finally, because the SI-MORENA project focuses on technologies such as VR
and Augmented Reality (AR), it is also interesting to look into video games which employ
fire spreading mechanics, and in situations where engine information is unavailable,
speculation through careful observation and debugging can prove informative to learning
how these effects are optimized for real-time rendering constraints.

2.1 Virtual Reality

Virtual Reality, as a technology, is very computationally expensive. The PlayStation 5,
currently one of the most technologically advanced home game consoles, supports two
different modes: Quality mode and Performance mode[47]. When it comes to games with
high graphical fidelity, the former tends to aim for 4K resolutions at 30 Frames Per Second
(FPS), while the latter targets 1080p resolutions at 60 to 120 FPS. VR, on the other hand,
requires a minimum of 90 FPS to prevent motion sickness[8], and typically renders at
1080p or, more commonly, near 4K quality for each eye. The fact that both eyes need to
observe the scene at different perspectives means that the scene has to be fully rendered
twice, leading to an additional performance strain.

Currently the easiest way to target such demanding rendering profiles is by improving
the hardware used to render. This, of course, is not always a viable solution, so instead
some techniques are utilized to trick the eye into thinking it is looking at a higher resolution
than it is. Techniques such as interlacing have been present since the existence of motion
picture[46], with checkerboard rendering being used by game consoles since 2013[42].
VR, on the other hand, can benefit from a technique known as Foveated Rendering[39],
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which can combine eye tracking to increase the resolution of the scene close to where the
eye is looking while keeping the peripheral vision at a lower resolution. Unfortunately,
very few VR headsets in the market have eye tracking technology, so the foveated area is
typically static to the center of the frame. NVIDIA also provides Deep Learning Super
Sampling (DLSS), which is a real-time machine learning algorithm that is used to upscale
an image[10]. This technology is proprietary to NVIDIA, however AMD provides an open
source alternative called FidelityFX Super Resolution (FSR)[1].

One interesting rendering technique that is commonly used in VR is Asynchronous
Reprojection[3]. This technique stands out because it does not improve performance itself,
rather only the perception of the frame rate. This is accomplished by taking multiple
previously displayed frames and using the motion information from a headset’s sensors to
warp the frames into a prediction of what the next scene will look like, until the Graphics
Processing Unit (GPU) is able to catch up and render a brand new frame of information.
The biggest downsides of this method are that the edges of the scene tend to be distorted
(the use of eye tracking can be used to alleviate this problem) and that the motion of
objects in the scene cannot be interpolated.

2.2 Geographic Information Systems

A GIS is a collection of systems, both hardware and software, used to store geographical
information. This includes, but is not limited to, terrain displacement, landmarks such
as cities and roads, latitudinal and longitudinal coordinates, and even custom data[49].
This extra flexibility allows GISes to be used to map anything cartographically, such as
crime rates, weather, or traffic. Most of this data can be stored in an Extensible Mark-up
Language (XML)-like format known as Geography Mark-up Language (GML), or as a
JavaScript Object Notation (JSON)-like format known as GeoJSON. Some popular software
which can read and modify GIS data include the proprietary ArcGIS[2], and the free and
open-source alternative QGIS[43].

The data stored in a GIS is represented in two main forms: as either a rasterized image
or as a vector graphic, with the latter allowing for more precision. One useful type of
data that can be generated from a GIS is a heightmap, which is a greyscale raster image
where the value of each pixel represents a height value (where lighter colors represent
higher elevations than darker colors). An example heightmap is illustrated in Figure 2.1.
Heightmaps are commonly referred to as a Digital Elevation Model (DEM) in the context
of GIS’.

One concept that can be challenging is representing the three-dimensional shape of
the earth as a two-dimensional plane. All projections of a sphere on a plane will require
that the surface be distorted in some form, and so many different map projections exist as
a compromise[33]. GIS systems are no different, and usually contain embedded within
them information about the projection system it uses.
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Figure 2.1: A heightmap of the world. The image is 21600x10800 pixels, where each
pixel roughly represents 2km (1.8km at the equator) of the earth’s surface, while the pixel
brightness represents the ratio between the highest point (Mount Everest at 8.8 thousand
km above sea level) and the lowest point (The Mariana Trench at 10.1 thousand km below
sea level), with sea-level translating roughly to 56% brightness. Image sourced from [4].

.

2.3 MACFIRE and SI-MORENA

Because MACFIRE only contains discrete points when they are manually logged, and
said points can vary significantly in location and timestamp, it can be difficult to visualize
the event at a macro scale. FCT proposed a VR based visualisation tool to assist in this.
One of the important steps was transforming the data into something which could be
more easily interacted with. One student[7] proposed a technique for generating polygons
from the data, allowing for a greater understanding of how the fire propagates and for
filling in the gaps in the timeline into discrete 10 minute steps. This also allowed for the
dealing of edge cases such as when two fire fronts unite, which the program struggled to
convey previously.

To create a map of the area, the visualisation tool utilizes georeferenced data to create
maps of fire afflicted areas. This data is used to both generate terrain and vegetation[36].
The terrain is generated through heightmaps and Unreal Engine’s World Composition
tool[51], while the vegetation through Unreal Engine’s Procedural Foliage Tool[14] and
Grass Tool[25]. The data is not used to position every single individual tree or grass object
in a given area, rather it provides the program with parameters for vegetation density.
The vegetation itself is not placed randomly, rather it uses an algorithm to approximate
the natural spread of plant seeds, as well as some filters to prevent the spawning of trees
in incorrect areas (such as roads). This can be seen in Figure 2.2.

The plants generated by the Procedural Foliage Tool are instances and have full 3D
models, including Level of Detail (LOD)s. The Grass Tool, on the other hand, does not
generate instances. Rather, a map is generated to represent the grass object positions,
which are only rendered if the camera is close enough.

When burned, the area is changed by darkening the terrain and trees, removing leaves
from trees (leaving their skeletons behind), and removing the grass altogether. This is
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Figure 2.2: A demonstration of the vegetation filtering in action (Image sourced from [36])

illustrated in Figure 2.3(a). The burned area is represented by a polygon, which is used
to filter which areas of the map require switching texture and/or models. Some basic
fire particles are placed in the edges of this polygon, as demonstrated in Figure 2.3(b).
This polygon is generated by interpolating known data from a forest fire provided by
MACFIRE[7]. Therefore, it is not necessary to simulate the actual spread of the fire from
the ground up, merely how the fire front transitions between two fixed times in the data.

(a) (b)

Figure 2.3: The current state of the tool’s scene rendering. 2.3(a) demonstrates the contrast
between an area affected by a fire and one that has not (Image sourced from [36]), while
2.3(b) shows the current method for illustrating the fire front (Image sourced from [7]).

The ultimate goal of this dissertation is not to simulate the propagation of fire in a
forest from scratch, but rather attempt to fill the gaps in the 10 minute intervals of the
interpolated data in a visual manner. This provides a good compromise between the need
for a realistic simulation, and the computational challenges outlined in Chapter 2.1.

2.4 Simulating a Flame

To tackle the subject of simulating fire, one must first look at the physics behind
combustion. Fire is an exothermic chemical reaction, where particles quickly exchange
bonds with surrounding gases, in a process known as oxidation. The flame is the visible
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portion of the fire, and is a mixture of gases that emit light[28]. It would currently be
computationally infeasible to simulate all of the chemical processes happening at play,
however, since the flame itself is an incandescent gas, it can be modeled as a fluid. This
also means that smoke, while not entirely a gas, as it is composed of both solid and liquid
particles, can be modeled using the same system (as in, treated like a gas) [37].

There are two main approaches to modeling fluids in a computer. One could choose
to model it as individual particles, or as a grid of stationary regions with attributes that
represent the average of "imaginary" particles that would be in each grid square. Said grid
does not need to be equisized, the size and amount of the grid cells can vary depending on
the amount of detail one wishes to represent in a given area (for instance, higher density
areas need more accurate computations, so should be represented with more cells). From a
mathematical point of view, one can represent the state of a fluid at a given time through a
velocity vector. The Navier–Stokes equations are one such representation of the evolution
of a velocity field over time[48].

Fluid simulations involve numerous steps, such as diffusion, advection, and divergence.
They can be further refined by calculating other properties such as foaming, vorticity
confinement, surface tension, and even going as far as trying to simulate non-Newtonian
fluids. Of course, the more complex the simulation, the more real-time performance is
impacted.

2.4.1 Rendering Fluids

Once we have a working simulation, the next step is to render the flame. A good
approach to rendering gases is through the use of volumetric rendering, because the
common rendering technique of using 3D triangles would prove very computationally
challenging for the high quality meshes needed to get a good looking result. Instead, the
shape is sliced into isosurfaces and rendered through a collection of billboards. This is
typically done using the marching cube algorithm or through ray marching[12].

The rendering of volumetric fire can prove useful for emulating light emission without
the need for ray tracing. Using the volumetric fire data and the Radiative Transport
Equation, Pegoraro and Parker provided us a method to calculate the evolution of the fire’s
radiance[40]. Most of the light generated is from soot particles, which are approximated
per unit volume of cloud. Color is achieved using Plank’s formula. Finally, refraction
is calculated using Ciddor’s equation. The test scenes used in the paper took 40 to 80
seconds to render.

Much like ray tracing was considered too computationally expensive to perform in
real time for decades, advancements in hardware technology has led to fluid simulations
being computationally feasible as well. An overview of the performance of three different
rendering techniques was demonstrated in a thesis by Y. He[27]. The three methods
consisted of: a fluid simulation, a coefficient estimation, and deterministic ray tracing,
and each was tested with different solver algorithms and at different grid resolutions. The
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thesis shows that the rendering process can be quite heavy, with frame times around the
1ms mark for a single flame at base resolution. The results can be consulted in the table
2.1. Considering that a forest fire will contain multiple fires, as well as many other objects
to render, it is unlikely that the final scene would fall under the 11ms minimum for VR.

Time(ms) Under Resolution
Module Block Half Base Double

Fluid Simulation MacCormack Advection <1 4±1 >1000
Pressure Solver (34 iterations) 1±0.2 5±1 50±30

Coefficient Estimation

Fire Color Integral <1 2±1 60±10
Local Multiple Scattering Fire (30 iterations) <1 1±0.1 10±5
Global Distant Light Propagation 1±0.1 5±0.2 60±10
Distant Light Local Multiple Scattering (10 iterations) <1 1±1 4±2

Deterministic Ray Tracing Rendering (150 samples per pixel) <1 2±1 143±8

Table 2.1: Performance table showing the different rendering techniques described by Y.
He (Sourced from [27])

Fuller et al.[16] demonstrated that it is not necessary to perform complex fluid simula-
tions at all to achieve good looking results with volumetric rendering of fire. The method
described in this paper consists of using a base texture to define the color, intensity, and
shape of the fire, and then generating the volume from it. The volume is then subdivided
horizontally and deformed using a B-spline, as illustrated in Figure 2.4. The texture
mapping is challenging as the entire rendering is performed in a pixel shader, so the
texture coordinates need to be transformed as well. To give it the volumetric appearance,
the fire is sliced into multiple billboards using the cube slicing algorithm, and displaced
with Perlin Noise to generate disturbances to the flame.

Figure 2.4: A breakdown of the volumetric fire rendering approach from Fuller et al.
(Image sourced from [16])

2.4.2 Simpler Ways of Rendering Flames - Particle Systems

Video games have been rendering 3D flames at real-time speeds for decades without
the use of fluid solvers. Because Unreal Engine is a general game engine first and foremost,
it will be beneficial to look at simpler approaches of rendering flames and smoke. Fluid
simulations are great tools, but might be less performant when tested in a large forest
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scene. Due to the density of vegetation, the GPU can be very easily bottlenecked, with the
CPU being kept busy with other high level engine code.

The simplest form can be through the use of a particle system[30], as shown in Figure
2.5(a). This method allows us to greatly optimize the rendering, by generating billboards
(which are flat objects in 3D space that always face the camera) in a given shape. More
realistic flames can be rendered by using a higher number of particles, however, since this
greatly impacts performance, this method is typically reserved for flames that are closer
to the camera. Yet, even in this simple method, if we wish to blend the particle textures for
the best possible performance, we must first sort them by distance to the camera, adding
another layer of preprocessing and increasing the rendering complexity.

Another common technique for rendering fire is to use animated textures on billboards,
illustrated in Figure 2.5(b). This has the benefit of being much lighter than a particle system,
but the downside of looking repetitive due to the limited numberof frames in the animation.
This can be alleviated through the use of deformation curves and noise to visually displace
the textures, not too dissimilar to the technique described by Fuller et al.

(a) (b)

Figure 2.5: A demonstration of both methods for rendering fire using particles. 2.5(a)
is using a particle system (Image sourced from[30]), while 2.5(b) shows a collection of
animated billboards in the game Half-Life 2

2.5 Fire Spreading Simulation

As previously mentioned, it is not necessary to perform a simulation of the fire
propagation at a macro scale, since we are already provided with the data of an actual
forest fire. However there is still the issue of the micro simulation. This would include
phenomena such as fire spreading upwards from the base of a tree to the leaves above it,
as well as leaves from one tree spreading their embers directly onto the leaves of another
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tree. Furthermore, as previously stated, the tool only allows for scrubbing between 10
minute intervals, therefore micro simulations will be needed to fill in the gaps.

It is also worth noting that these micro simulations should only occur if the camera
is close enough to the fire to properly observe it. There is no point in processing and
rendering simulations of the fire spreading from branch to branch if individual branches
cannot be distinguished on the viewer’s screen.

Pirk et al.[41] demonstrated an incredibly complete simulation of a tree burning. The
method in the paper allows the simulation of heat transfer, temperature changes, and even
weakening (and eventual breakage) of individual branches. This was accomplished by
representing the tree as a system of connected particles, which store physical and biological
attributes, embedded in a physics simulator. The fire itself is treated as a temperature field
evolving in a gaseous fluid, represented by a grid, and simulated through fluid dynamics.

Another paper by Hädrich et al.[26] discusses an extensive forest fire simulation tool.
The tool simulates, in realtime, the propagation of flames due to numerous factors, such as
tree geometry, terrain (downward slopes tend to propagate fires less than upward ones),
wind, and different vegetation materials. The simulation of fires is done through a grid-
based fluid solver, to allow to transfer heat from the environment to other plants (which
in turn heat up the environment, creating a feedback loop). This paper stands out from
the fact that the smoke can also generate condensation. This can lead to flammagenitus
clouds, phenomena which can cause rain or thunderstorms, as depicted in Figure 2.6.

Figure 2.6: A demonstration of the generation of flammagenitus clouds (and their effect
on the environment) in the simulation by Hädrich et al. (Image sourced from [26])

2.6 Games

Once again, fluid simulations have come up as a technique for solving micro-scale
simulation of fires, but video games have been doing the same, in a convincing manner,
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for decades. Therefore, it is beneficial to look at some concrete examples regarding how
some games approach the problem in a simpler, but convincing form.

2.6.1 Far Cry

Far Cry is an Open World shooter series by Ubisoft, best known for its realistic depiction
of an incredibly lush forest which players may burn during combat. J. Lévesque, one of the
engineers behind the game’s engine, described the implementation of the fire mechanic in
a blog post[31]. In essence, the world is divided into an equally spaced two-dimensional
grid, while objects are divided into a three-dimensional grid, as illustrated in Figure 2.7(b).
These grids are generated dynamically when a fire happens. Each grid has a health value,
and when its health reaches zero, it ignites. When ablaze, it will damage surrounding
grids over time. A cell will also deal more damage in the direction of the game’s wind,
using dot product to interpolate the directional damage. This is shown in Figure 2.7(a).
Different materials are simply just grid values with larger health points.

(a) (b)

Figure 2.7: A visual representation of the fire spreading in Far Cry. 2.7(a) demonstrates
the cell health and fire spreading, while 2.7(b) shows how a three-dimensional grid is
constructed for objects (Images sourced from [31])

The effect also uses three optimisations:

1. Fire particle emitters are moved to align with the player’s view, and the density of
emitters is also increased the closer the player is to the fire. When there is a lack of
memory, emitters are reduced but the particle sizes increase to compensate.

2. Cells are combined (and separated as needed) into the smallest possible box that
encloses them, which allows engine events to be sent per box instead of per cell.

3. Each fire contains a "spreading value", which it reduces over time. The spreading
value is passed onto adjacent cells when they burn, to contain the fires into small
areas.

In terms of rendering, through observation, it is simple to deduce that the fire in Far
Cry is composed of animated billboards, and some smoke billboards. Figure 2.8(a) shows
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that particles can become wider and taller depending on both the size of the fire, as well
how close the player is to them (as previously outlined). The flame billboards will also
tilt based on the direction of the wind. After being burned, objects simply disappear, are
swapped out for skeletons versions (trees, for instance, do not disappear but rather have
their branches emptied of leaves, shown in Figure 2.8(b)), or have their textures darkened
to look charred.

(a) (b)

Figure 2.8: A demonstration of fire in the Far Cry series. Figure 2.8(a) shows a burning
house in Far Cry 3, while Figure 2.8(b) shows a burning tree being de-leafed in Far Cry 4

2.6.2 Minecraft

Minecraft is a sandbox open world game, developed by Mojang. Minecraft’s world
is procedurally generated and composed entirely of blocks. Unlike Far Cry, the actual
implementation of the fire mechanics are not publicly available, but have been observed
and documented by the game’s community[13]. Every block in Minecraft has physical
properties, such as flammability and health. Fire spreads to adjacent flammable blocks at
a distance of one block sideways (including diagonals), one block downwards, and up to
four blocks upwards. The probability of a block catching fire and the duration it burns
for is dependent on the material’s properties.

When a block is burning in Minecraft, its fire is rendered based on which sides have
caught fire. Top fires are rendered as an animated cube, lateral fires are rendered as
flat, animated textures and bottom fires are rendered as two animated textures facing
each other. The fire effect emits very small pixel particles (to represent smoke) that travel
upwards a short distance and disappear. All of this is visually demonstrated in Figure
2.9. Once an item has been burned, it simply disappears. Minecraft does not employ any
material swapping or color darkening on burned materials.

2.6.3 Teardown

Teardown is a sandbox game developed by Tuxedo Labs. Teardown stands out due to
the fact that its world is composed entirely of voxels (which are not axis aligned), and fully

13



CHAPTER 2. RELATED WORK

Figure 2.9: A screenshot of a burning wooden house in Minecraft

ray traced. Unfortunately, similarly to Minecraft, the developers have not openly discussed
the implementation details, but it can be extrapolated both from developer blog posts and
community observations[15]. Each voxel contains physical properties, and are grouped by
volumes. Fire, shown in Figure 2.10(a), spreads similarly to Minecraft but with the added
bonus of also producing volumetric smoke, shown in Figure 2.10(b), while simultaneously
heavily affecting structures. Teardown, unlike Minecraft, simulates flexible joints and block
physics, resulting in structures collapsing in their entirety if they are left floating. Similarly
to Minecraft, due to the voxel approach to the game’s engine, fires simply remove voxels
from the game world, as opposed to leaving charred remains.

(a) (b)

Figure 2.10: Screenshots of fire (Figure 2.10(a)) and smoke (Figure 2.10(b)) in Teardown.

Teardown, despite all its graphical fidelity (albeit in a stylized look), does not run very
well outside of enthusiast-level graphics cards, showing that the described techniques
might not be ready for use in a VR environment.

2.7 Spatial Partitioning

Because the project will involve development of a micro-scale fire simulation over a
potentially large area, it is imperative to look at ways to perform complex searches fast
and efficiently. This will require some sort of spatial partitioning algorithm, which allows
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for the culling of objects to reduce the temporal complexity of searches. Typically, space
partitioning is accomplished through the use of a tree data structure.

2.7.1 Two-Dimensional

Perhaps one of the easiest approaches to partitioning a space in two dimensions is to
break it into an equally spaced grid, this can be simply represented as a two-dimensional
array where each cell points to a list. Finding objects in a particular area is as simple as
finding which cells intersect with the search shape, and then performing an intersection
test on the objects stored in each cell.

This solution presents some issues. Firstly, if objects are concentrated in a given region,
the empty cells will needlessly occupy memory, as illustrated in Figure 2.11. The second
problem is that this solution might be a bit tricky in the scenario where an object intersects
two or more cells, as you will be required to duplicate the object so that it can be found in
either cell. Finally, if the object is sufficiently large that it occupies a lot of cells, this means
even more duplicated data which needs to be filtered out during the search process.

Figure 2.11: An example scene, showcasing the potential problems with the naïve approach
to partitioning the space as a grid. The objects only really occupy the top right quadrant
of the scene, so a large amount of cells are left empty. The green circle is on the border
between two cells, while the large red circle occupies 9 different cells.

A better approach to this idea of dividing the map into equally spaced grids is to instead
divide it only when necessary. One could divide the space equally into four sections, and
then subdivide those sections again as more granularity is needed. This granularity can be
as simple as having a constant "capacity" value that causes the subdivision to occur once
the number of objects in the quadrant surpasses said capacity. During the subdivision
process, the objects are moved into the children nodes nodes only if said object can be
fully encompassed by a given child quadrant. If the object will not fit into any child, then
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it is kept in the parent, even if this will result in the quadrant being over capacity. This
algorithm is known as a quadtree, and was proposed in a paper by R. Finkel and J.L.
Bentley in 1974[44].

(a) (b)

Figure 2.12: The example scene from Figure 2.11, now using a quadtree. The tree on
Figure 2.12(b) represents the scene in Figure 2.12(a). A capacity value of 5 was chosen for
this particular quadtree.

The squares that make up the space of a quadtree are known as an Axis Aligned
Bounding Box (AABB). AABB’s are defined by a minimum point, which is typically the
corner coordinate of the square with the smallest value on 𝑋 and 𝑌, and a maximum
point with the largest 𝑋 and 𝑌 value. The minimum and maximum coordinate point are
always diagonally opposite to each other in a square. The square do not have any rotation
to them, hence they are always aligned to the Cartesian coordinate axis.

Searches, insertions, and deletions in quadtrees have a complexity of 𝑂(log 𝑛) in both
the average and worst case. Deletions, however, can be reduced to 𝑂(1) by simply storing
a pointer to the node which the element is stored in. Once removed from a grid, the
implementation can choose to remove all children nodes from the quadtree if they are all
found to be empty. This can be done in order to reduce the memory footprint of the data
structure, and can even be performed in a deferred step to reduce the computational load
from a deletion.

Quadtrees do not need to be strictly implemented as a perfectly even subdivision of
the space. Because performing checks on axis aligned bounding boxes is relatively cheap,
a scene can instead be subdivided into more convenient rectangles. For instance, in Figure
2.12(a), the northwest and southwest quadrants could be combined into a rectangle. The
northeast-most quadrant could store the largest circle instead of its parent node if the
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subdivision was performed at the minimum coordinate of the bounding box encompassing
the circle.

One of the pitfalls of a quadtree is that if the scene is highly dynamic in nature, the
quadtree requires a lot of removal, insertions, and subdivisions in a short amount of time.
A better approach to this would be to loosen the concept of a boundary, focusing more
on the minimum bounding rectangle that surrounds a set of objects rather than the strict
bounding box of the subdivision of the space. This means that as the objects in the space
move, so does the boundary that encompasses them. This variant is known as a loose
quadtree [34].

2.7.2 Three-Dimensional

While a quadtree is strictly designed for a two-dimensional space, it is relatively simple
to extrapolate it into three dimensions. Instead of subdividing it into four quadrants, it
can be subdivided into eight octants. This variant is known as an Octree[35], and is
demonstrated visually in Figure 2.13.

Figure 2.13: An example of an octree, showing its spacial representation on the left, and
its subsequent tree on the right. Image sourced from [50].

When it comes to partitioning fluids, octrees can be used, but a more common
alternative is the k-d tree[5]. These trees are preferable for this scenario because they are
specifically designed to facilitate nearest-neighbor searches, which is the most common
type query used in fluid dynamics. K-d trees are, put simply, an octree where instead of
splitting the area into an octant it is only split in half by a single hyperplane. K-d trees
therefore provide an efficient way to partition and query clusters of points, however they
do not provide an efficient way to query arbitrary shapes. k-d trees also struggle with
dynamic data as it could easily require rebuilding the entire tree when an object is moved.

2.8 Unreal Engine

While the wildfire visualisation tool was initially written in Unreal Engine 4 (UE4), it
will be upgraded to Unreal Engine 5 (UE5) to take advantage of the new features, such as
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a much simpler-to-use World Composition workflow which removes a few steps to load
map data onto the engine.

Unreal Engine’s development can be done in two ways: using a visual scripting
language called Blueprint, or through C++. The latter tends to be more flexible, allowing
the user full control of the engine, as well as more performant code. UE5, unlike most
modern game engines, opts for an object oriented approach over an entity component
system.

It is worth pointing out that Unreal Engine uses a left-handed coordinate system,
where the positive 𝑍 axis points upwards. The easiest way to visualize this is by looking
at a paper map: north points towards the negative 𝑌 axis, east towards the positive 𝑋 axis,
and positive 𝑍 axis being the height of terrain extruding towards the eyes of the reader.

2.8.1 World Partition

Worlds in unreal can be created in two different ways: either by hand or from
Heightmaps. In order to create levels from heightmaps, however, the images must
go through a pre-processing step where they are split into chunks using an algorithm
explained in the development documents[18].

When it came to large levels, UE4 provided a system called "Level Streaming". In
essence, the world was split into chunks, which were loaded as the player approached the
edges of the play area. The developer would create one "persistent" level which would
always be loaded, and this one would decide when to stream a chunk of the level in or
out[20].

Later on, Epic Games introduced World Composition as an alternative[23]. It was
created to combat one of the main problems of the level streaming system, which was that
the level files were locked while they were being worked on by a developer, complicating
collaboration. It also allowed worlds to be created which were not limited by the hard-
coded size limit in Unreal Engine worlds.

UE5 then proceeded to deprecate the level streaming and world composition systems
in favor of a new "World Partition" system[24]. This new system provided better memory
management, smaller file sizes, and support for multiplayer (which was missing on World
Composition). World partition also introduced a new slew of features, including data
layers (allowing actors to be grouped, which could then be toggled as necessary), and a
editor that allowed for greater control over how regions are loaded. Porting over a world
from the level streaming system is relatively seamless, but converting projects from the
world composition system is more complicated.

2.8.2 Particle Systems

Unreal Engine provides two different tools for creating particles systems: Cascade
and Niagara. The former has been largely superseded by by the latter in UE5, which
provides better control over the emitters, GPU processing support, and even support for
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fluid simulations. Although Epic Games advises against the use of fluid simulations due
to their heavy nature, suggesting instead to bake the results of the simulations[38]. This
is a potentially viable approach, given that the scene will not be dynamically altered by
the user.

UE5’s Niagra particles are composed of three layers. The first is a system, which
contains all the elements (and subsequently is what is spawned in the level). Systems
contain emitters, which create the individual particles, and each emitter contain modules
which tell the particles how to behave. The tool provides a plethora of features, allowing
to modify multiple aspects of a particle while it lives. This includes physics (velocity,
momentum, friction, gravity), color, size, collisions, and even event handlers.

2.8.3 Foliage

In order to make a forest scene, one of the most important things that will be needed is
foliage. The Unreal Engine provides a Foliage Tool, which allows the user to paint foliage
into the world. This, in essence, is a tool for placing objects and models in a world with
given random properties, using a given density.

In UE5, the Procedural Foliage Tool was introduced with the aim of significantly
speeding up the placing of foliage into the world[21]. However, because this tool is
experimental, it must be manually enabled by the user.

One of the features of the procedural foliage tool is that, rather than manually placing
objects in a world, it allows the developer to procedurally spawn foliage into the world
given a set of parameters and constraints. This is done by simulating the creation of foliage
over time with an initial seed density by giving them lifespans and letting them grow,
and spread, and die as they would naturally. This results in a more realistic clustering of
foliage, and even goes as far as making foliage be less likely to grow in areas where they
are not exposed properly to sunlight. The result from the procedural foliage placement is
shown visually in Figure 2.14.

Figure 2.14: A demonstration of Unreal Engine’s procedural foliage. Image was sourced
from [21].
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2.8.4 Assets

In order to have a realistic looking scene, we will require a large number of assets.
Creating these 3D models, textures, and animations can take a significant amount of time.
As a result, Epic Games provides the Unreal Asset store, where developers can purchase
high-quality assets for free and commercial use. The store not only provides assets, but
also plugins, code, and even entirely finished games. This can be used to significantly
speed up and decrease the cost of development.

Another important tool provided by Unreal Engine is its material system. While
shaders can be written from the ground up using High Level Shading Language (HLSL),
UE5 provides a node based shading system which support many complex features such as
Physically Based Rendering (PBR), layers, and animations through mathematical functions.

The last aspect of UE5 which is relevant to our work is the LOD system. Unreal
Engine’s LOD system is basic, allowing for the swapping of models at runtime based on
their relative size to the player’s screen. A common technique for rendering lush forests in
video games is to swap them out for billboards at long distances. Unreal does not provide
this functionality as part of its LOD engine directly, but rather through an alternative
system called Impostors[45].
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Proposed Solution

Given our analysis of fire simulation and rendering in Chapter 2, as well as our research
into practical implementations in professional video games, we may now conceptualize
a solution for our initial problem, defined in 1.3. This Chapter presents our design of a
program that can meet the performance requirements to simulate a real fire in VR.

3.1 Micro Simulation

As it stands right now, the fire visualisation tool works as such:

1. A server is launched, which contains the data points from a fire that happened,
stored in GIS format.

2. The VR game is launched, and it connects to the server.

3. The game requests fire front data from the server. This happens in 10 minute
intervals.

4. The data points from the server are used to generate a polygon which is then
projected onto the map.

5. Said polygon is used to modify foliage and repaint the terrain.

6. Finally, a set of particles are drawn on the edges of the polygon to simulate a fire
front.

The tool already performs a macro-level simulation of the fire, represented by the
polygon of the fire front. The goal is to focus on the micro-level simulation, ie:

1. What happens to the foliage when the fire touches it?

2. How thick is the fire front itself?

3. When does said fire in the front burn out?

4. How can we interpolate the current simulation with its final result?
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5. Similarly, how can we reverse or skip time in the simulation?

The proposition is as follows. Consider the entire region which we wish to simulate,
partitioned as a 2D grid where each element has a side of length 𝑆. A grid element can
have one of four different states:

1. Empty - This grid position is unoccupied by a grid element, thus it does not take up
memory in the program.

2. Ignited - This grid position represents a fire, and is attempting to spread to sur-
rounding grid cells. These cells are initialized with a lifetime value 𝐿.

3. Damaged - This grid position is not on fire, but is currently taking damage from a
grid element which is ignited. When initialized, this grid will have a health value 𝐻.

4. Burnt - This grid position represents a fire that has burnt out, and no longer does
anything.

At the start of the program, there will be no grid elements present, meaning all
positions of the grid are empty. At some point in time, a single grid element will ignite
(representing the start of the fire), and it will want to spread to other grids. Since the grids
that surround the grid element are Empty, the neighbours must first be generated, so the
program will generate as Damaged grids in empty positions surrounding the Ignited grid
element. Over time, the ignited grid attacks the neighbouring grids and depletes their
𝐻. Once the 𝐻 hits zero, this grid will turn into an Ignited grid element, and will repeat
the cycle of creating neighbours and damaging them. After enough time has passed, a
grid element’s 𝐿 will expire, and it will transform into a Burnt grid, which no longer does
anything and merely exists to ensure that the grid position will not be occupied again in
the future. Figure 3.1 demonstrates this system visually.

Figure 3.1: An example scene. The fire started at the center and spread evenly in all
directions. The green grids represent damaged cells, the red grids represent ignited cells,
and the black grids represent burnt cells.

Because the entire terrain is generated from a heightmap (a two dimensional represen-
tation of the world), it would make sense to keep this simulation entirely confined within
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the worlds of two dimensions. This means that, in order to spread to other elements, grids
simply will need to check neighbouring cells on the 𝑥 and 𝑦 dimensions.

However, the same does not ring true for foliage, like trees. In this scenario, if a grid
element overlaps a piece of foliage, it must also start checking for neighbours in the 𝑧 axis.
Once a grid element no longer overlaps a piece of foliage, it can ignore the 𝑧 axis once
again. Figure 3.2 shows grid elements spreading to foliage.

Figure 3.2: An example of the grids spreading to a piece of foliage

3.1.1 Optimizing the Grid

Once the cell spreading system has been implemented, the next step will be to improve
its performance. It does not make sense to perform a micro simulation on areas of the
map that are not being observed up close by the camera, therefore it would be pertinent
to decrease the resolution of the grid based on the distance from the camera.

To keep the system simple, rather than having the grid itself change, it was chosen to
have the grid elements themselves shrink and grow with one another. Once the camera
is sufficiently distant from a cell, for distance 𝐷, the cell is now allowed to grow up to a
maximum of 2𝑆 of its original size. Similarly, if the camera is 2𝐷 away from the cell, it can
occupy 3𝑆 grid ppositions. However, if the camera’s distance returns to 𝐷, then the 3𝑆
cell must split itself back into a set of 2𝑆 and 𝑆 sized cells. Figure 3.3 shows the scaling of
grid elements based on their distance from the camera.

Figure 3.3: An example of the cell sizes changing based on their distance to the observer
on the bottom left
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When a grid element of size 𝑛𝑆 ignites, the neighbours it generates should also have a
size 𝑛𝑆, otherwise large cells would end up creating thousands of small cells, at a rate of
9 + 4 × 𝑛. These neighbours would have their 𝐻 value scale based on their distance size,
and similarly ignited cells would scale their initial 𝐿 value too.

When it comes to combining the data from two separate cells, it can be as simple as
summing their 𝐻 or 𝐿 value, and similarly dividing them in the case of a cell division.
Ultimately, the point of the system is that it can be convincing enough at a glance. It does
not need to hold up to scrutiny every time the user observes it, as long as the simulation
converges with the data of the actual fire.

3.1.2 Connecting the Simulation to the Data

While there will not be enough time to actually integrate the cell spreading system
into the final fire visualisation tool, it is important to have a plan for how such a thing
would be accomplished. Therefore, this section proposes a method for ensuring that the
simulation adheres to the fire front data obtained from the server.

It does not make much sense to simulate a fire if we have data that we wish the fire
to match. However, the truth is that we already have everything we need in order to do
that. Because the fire front is represented as a polygon, and we can poll the server for the
polygon which represents the fire at a future point in time, we can simply scale the 𝐿 and
𝐻 value of the cells so that they converge with the target polygon. Not only that, knowing
the current position of the cell, we can project the shortest line from it to the nearest edge
of the polygon, and we can use that to help guide the fire to ensure its spread converges
in a specific direction. An example of a collection of grid elements spreading to converge
with the fire front polygon edge is shown in Figure 3.4.

Figure 3.4: The pink line represents the current fire front, while the dotted line represents
the front after T time. The black arrow shows the direction which the grid elements will
converge towards.

There is an issue with this approach: the edge of the polygon, which represents the
fire front, may converge with another edge, or split into two or more edges. One solution
here is to spread fire to grid elements according to which edge is closest. However, to
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avoid querying for closest polygon edge for each grid element, we can store the polygon
data in a quadtree as well, culling the required number of edges that need to be checked.

One benefit of connecting the simulation to the data will be that the burnt grids will no
longer be necessary. In the scenario where a fire is being simulated freely, the burnt grids
are important to ensure that a grid element will not attempt to spread to an area which
has already been completely burned out, so these grids will always have to be stored
in memory. In the case where we are tying the simulation to already existing data, we
don’t need to worry about this phenomena, as there should be enough systems in place
to prevent the ignited grids to spread backwards.

3.2 Fire Rendering and Terrain Damage

For rendering the fire front, the simplest approach is to use a billboard-based particle
system. A full-on fluid simulation is unnecessarily computationally heavy, especially
considering that the scene will likely be GPU-bound as opposed to CPU-bound once the
fire has grown sufficiently large.

One of the benefits of using cell combination technique described in section 3.1.1 is
that we can use the size of the cell itself to define how large a fire particle should be. It is
unnecessary to have a lot of really small particles at distances where they cannot be told
apart, so instead we join these into a single large particle of the same size, as shown in
Figure 3.5.

Figure 3.5: A demonstration of scaling particles by distance. Since one might not even be
able to see the different branches in a tree that is far away, it would be more performant to
draw one large particle than to draw smaller particles on each individual branch.

There exists other phenomena in fire, such as haze, sparks, and smoke, which would
be interesting to also render through particles. However, these should be low priority
as they can degrade performance significantly, as well as reduce visibility of the scene
(which complicates the use of the simulation as an educational tool).

When it comes to the assets themselves, such as the textures of the terrain, the models
of the foliage, and the particle effects themselves, these can be acquired from the Unreal
Asset Store. Asset development takes a significant amount of time, and is not the focus of
this dissertation.
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Lastly, it is also worth discussing the ways which we can simulate the damage which
the fire causes to the scene. Unreal Engine’s materials can be programmed to change
dynamically through the use of a shader. Unreal provides a node based programming
language for developing materials, combined with material layers, one could create a
texture which seamlessly blends between states. For instance, the ground could have a
normal grass layer, a burnt layer, and a layer that adds glowing sections to the grass in
order to simulate embers.

Another interesting thing worth investigating is Unreal Engine’s ability to place decals
on surfaces, which are textures which are projected onto surfaces. These are commonly
used in video games for bullet holes, blood splatters, and in our scenario, scorches from
explosions or fires. These can be used to blend the transition between the fire front and
the unburned terrain.

Unreal also supports the ability to switch models at runtime, so a healthy bit of foliage
can be replaced with a dead skeletal version once it has been completely consumed. In
the case of leaves, grass, and similar fauna, it is sufficient to simply remove these from
the world (or at least not render them). This could be done by fading it out, which while
not entirely realistic, would look a bit more convincing than simply making it invisible
instantly.

3.3 Evaluating the Solution

Due to Unreal Engine’s heavy system requirements, as well as the performance re-
quirements of VR, testing will require a relatively performant computer. In a worst-case
scenario, it is expected that the software run on consumer hardware, such as 64-Bit Win-
dows 10, with 16GB of Random Access Memory (RAM), and on the GeForce RTX 2060
6GB, one of the most popular consumer graphics cards[9]. The VR head mounted display
will be a HTC Vive Pro, with a 615 Pixels Per Inch (PPI) resolution, using the included
controllers which have 24 sensors.

Ideally, the project would be tested in a scene that represents the area of the Mação
region, but it can be relegated to a smaller test scene if there are problems regarding
integration with the SI-MORENA project. Even if it is impossible to test using real data
from a fire, the simulation itself can be tested at many different resolutions and grid sizes.

Visual improvements will lead to an impact in the performance of the tool. Therefore, it
is important to profile the implementations as they are completed. Unreal Engine provides
a pretty extensive GPU profiler tool called Unreal Insights, which can be used to aid in
this step. An example of the profiler is shown in Figure 3.6.

Unreal’s profiler can function in multiple ways. The first way is a simple time for
each step in the creation of a scene: game code running on the CPU, and rendering code
running on the GPU. Both return values in milliseconds, with our target being to keep
the scene total under 11.11ms (for our 90 FPS target). The profiler lets the user collect data
over a single frame, or during a set of frames, and it breaks down everything during said
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time. Of course, this profiling will impact performance while it is occurring, but not to
the point where the data it provides becomes useless. Nevertheless, the profiler will not
be running on the final application, so the concern is moot.

Figure 3.6: An scene breakdown from Unreal Insights, which shows the time it took for
the CPU to process different actors in a single game tick. Image taken from [22]

The rendering of the scene involves multiple steps on the GPU, from shadow passes,
visibility culling, screenspace effects, and reflection mapping. The profiler is able to break
down the time taken in each step, and even allows to show which objects are requesting
which step of the render pipeline, as well as graphic memory usage. Profiling the CPU
is not much different using Unreal’s profiler. It breaks down function call times in ms,
shows which objects called which functions, when threads were paused, and other useful
insights.

It is assumed that the rendering of the forest scene in the already developed tool is
currently optimal, but further improvements can be performed to improve it even further,
such as the entire removal of small objects (such as bushes) at far distances, the use of
billboards for far away trees, and texture LODs.

As the project is being developed, there will come points where a theoretical study of
a set of algorithms will not yield sufficient information to make a decision on which to
implement, so the Unreal profiler will serve to assist in choosing the best performing ones,
as well as make decisions on which part of the program will need to be optimisations. The
tool will also serve to show whether or not the final solution will be beneficial, as well as
figure out future optimisations or potential bottlenecks.
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Implementation

Following the design of the program outlined in Chapter 3, we outline the development
process, including challenges faced and decisions made to address these challenges at
each step.

The repository containing all the implemented work can be found at https://gitlab.
com/si-morena/vr-ar/lourencothesis.

4.1 Initial Work

In order to integrate the micro simulation, we first setup the existing fire visualisation
tool. This posed an immediate challenge due to issues with dependencies.

4.1.1 Setting up the Previous Work

The MACFIRE server application runs inside a Docker container, and is composed of
Flask (a Python web framework) alongside a PostGIS and PGAdmin databases to store GIS
data and user account data, respectively. The use of a web application allows offloading
of the fire front calculations to a separate system, and the use of Docker allows for easier
distribution.

However, despite the use of Docker, the existing build script did not initially compile
due to incorrect paths for some system files. This likely arose from changes to the project
structure as it developed. The fix was applied and published along with some comments
on the README regarding how to get the container compiling on Linux.

Following these corrections to the Dockerfile, both the container and the server built
and ran correctly. While no issues arose from compiling the Unreal 4.2 project, the state
of the fire visualisation tool itself presented the following issues:

1. The tool interfaced with the server, but did not appear to reflect changes from the
data.

2. The tool did not allow for the manipulation of time in the simulation.
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3. Assets, such as models and textures, were missing. This was due to the fact that the
asset packs which the project used originally were once free, but have since become
paid. There were other assets which were referenced in the code but not published
to the Git repository itself, likely due to file sizes.

VR functionality, such as headset and controller tracking, as well as player movement,
worked without much issue, although it did require the installation of multiple programs
such as Steam and HTC VIVEPORT. Many of these problems were ignored because
there was another student who was tasked with integrating all the previous work from
other students into one project, and it was assumed that many of these troubles would be
corrected in time.

4.1.2 Updating Unreal Engine

It was requested that the Unreal Engine 4.2 project be upgraded to Unreal 5.1, which
was the latest version at the time, in order to capitalize on the potential performance
improvements of 5.0’s World Partition.

Unreal Engine provides a "Project Upgrade Wizard", which attempts to convert the
project files to the newest format, resolve potential conflicts, and warn of deprecations.
Unfortunately, the Upgrade Wizard was not an option for the project, due to the use of
plugins without an available corresponding 5.0 version.

To solve this, the plugins had to be manually recompiled for Unreal 5.0, which was
possible due to the fact that their source code was included in their store pages. Most
of the plugins were relatively easy to convert, however one plugin named KantanCharts
was using deprecated functions, and these had to be replaced to get the plugin to compile
successfully.

Once the plugins which were not upgraded by their authors had been repaired, they
were placed manually in the project’s repository, and the project’s build system was
tweaked to fetch them locally as opposed from the asset store. Once this was done, the
Upgrade Wizard succeeded in converting the project.

The upgraded project was tested, and it was found to be in a similar state to how it
was before. Due to the fact that the student performing the merging had still not finished
their work, it was decided that the project would be left as is, since it was not known
whether it was fully functional or not. The upgraded project was published to git, and it
was decided that instead of losing further time waiting for other student’s work, that this
dissertation would be developed in a fresh repository, and its integration into the final
fire visualisation tool could be done at a later date.

4.2 Terrain Tool

Starting from scratch, one of the first things that is needed is to import the terrain of
the area where the fire occurred, which in this case is the Mação region in Santarém. A
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DEM of the region was provided in image format (as a heightmap) so that it could be
imported into Unreal Engine.

In Unreal Engine, a landscape is divided into multiple ’Landscape Components’, which
are subdivided first into sections, and then further subdivided into quads. Figure 4.1(a)
shows an example of how this division is done. More sections and quads increases the
resolution of the landscape, while more landscape components results in larger landscapes.
Epic Games features a table in their landscape documentation which recommends a
combination of input values to use[18], to be filled out in the form shown in Figure 4.1(b).
UE5 also requires that large landscapes be split into multiple tiles, with each individual
image following a name pattern.

(a) (b)

Figure 4.1: Figure 4.1(a) shows a landscape made of four components, each one split into
3 sections. Figure 4.1(b) shows the import settings in UE5.

When importing heightmaps, UE5 assumes that one pixel in the heightmap image is
equivalent to 1 meter, and so in order to properly import the landscape, we must know
the scale of each pixel[19]. QGIS allows us to import the heightmap and view information
about what its pixels represent. However, upon importing the heightmap, it stated that
the pixel size was 3.91 × 10−5 degrees. This meant that a pre-processing step would be
required to convert the DEM to a unit which could be used by UE5.

It was decided that a tool would be written to perform the reprojection of the DEM,
rescale its pixels to match UE5’s assumptions, tile, apply the name pattern, and finally to
output the recommended values to use when importing into UE5. Python was chosen as
the programming language for the tool for the following reasons:

1. It has support for the Geospatial Data Abstraction Library (GDAL), which would
simplify the reprojection step.

2. The Python interpreter that executes the scripts is cross-platform.
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3. Python is a relatively easy language to prototype in.

4. The execution speed of the program is irrelevant as it is an offline tool.

The reason that the original DEM uses degrees is because it is represented using the
geodetic system EPSG:4326. Because EPSG:4326 is a two-dimensional ellipsoidal repre-
sentation of the world, it needs to be converted into a geodetic system which represents
the world in Cartesian coordinates. This unfortunately is not something that can be easily
automated, at least not accurately, because the curvature of the earth is different based on
both latitude and longitude. Thus, a specific geodetic system must be selected, of which
EPSG:32629 was the best choice since it is specifically meant to be used within 12°W and
6°W of the northern hemisphere, where the Mação region is located.

GDAL also provides functions forscaling the heightmap, howeverbecause the heightmap
is made of discrete pixels, this process will be destructive when scaling down orwill require
extrapolation to fill in the gaps when scaling up. Therefore, to accomplish the resizing,
an image scaling algorithm must be used. By default, the tool uses nearest neighbour
resampling, but it also supports bilinear, cubic, and Lanczos resampling, among other
methods. To scale, the user simply provides the desired size of each pixel (in meters) on
𝑋 and 𝑌 as an input value to the program, optionally providing the preferred scaling
algorithm.

For the height, UE5 requires that the absolute minimum of the heightmap have a
brightness value of 0, and the absolute maximum to have a brightness value of 65535
(meaning the heightmap should have 16-bit precision). Hence, it is also necessary to get
the minimum and maximum brightness, so that all pixels can be scaled to the required
interval. Figure 4.2(a) shows the input DEM, and Figure 4.2(b) shows the outputted
heightmap which has been slightly rotated and had its brightness values normalized.

(a) (b)

Figure 4.2: Figure 4.2(a) is the raw DEM, while Figure 4.2(b) is the reprojected and rescaled
result from the Python tool (before tiling).

Finally, the program tiles the output image and names each one with the pattern
tile_xA_yB.png, where A and B represent the tile number in that specific axis. Because
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every tile must have the same size, any pixels of the heightmap that are outside of the
bounds of the original DEM are given a brightness of zero.

The tool was added to the same Git repository [as this project], and includes a README
that explains how to install the dependencies, use the tool,background knowledge about
geodetic systems, and how to switch the one used by the script. An example of the tool
being used to generate a heightmap is shown in Figure 4.3.

Figure 4.3: A demonstration of the Python tool being used to generate a heightmap tile
set, as well as the required scale values to import the heightmap into UE5.

The region of Mação represented in the DEM has an area of around 35× 32 kilometers,
and was initially attempted to import into Unreal with a pixel scaling of 1 meter. Unfortu-
nately, UE5 would crash while importing this heightmap; therefore, a pixel scaling of 5
meters was used instead. While this did not change the region represented in the DEM,
it did reduce the resolution of the detail slightly. It could be that, on a system with more
RAM, the import with 1 meter scaling would be successful, but the 5 meter scaling was
sufficient for our purposes. Figure 4.4 shows the imported terrain, running in UE5.

Figure 4.4: The terrain, imported into UE5 to scale. The highlighted square is a single
landscape component.
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Finally, with the map successfully imported into UE5, we proceeded to add foliage
to burn. Assets were brought over from the previous project, and a simple grass texture
was applied to the whole scene. Using the procedural foliage spawner, conifer trees were
added to a small area in the center of the map. While it would have been preferable to have
the foliage spawner affect the entire map, this would require multiple spawners to avoid
running out of memory in UE5. Since creating lots of different spawners would take a lot
of time to set up due to the map’s size, it was decided to leave this as future work, since a
fully decorated map was unnecessary for our tests, and doing so would require extensive
analysis of the data to provide an accurate reproduction of the real Mação environment.
Figure 4.5 shows the final product.

Figure 4.5: The terrain, now textured and with trees scattered about it.

4.3 Naïve Implementation

Due to the author’s familiarity with C++, this language was chosen as the development
language for the implementation of the fire spreading. This required the use of Microsoft
Visual Studio, which is a Windows only program. Once a Windows environment was set
up, work could begin.
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During this project’s development, subsequent versions of Unreal Engine were released,
with the last non-beta version (as of the writing of this dissertation) being 5.3.2. The project
was kept up to date with the releases, and is working on the latest stable release of the
engine.

In order to keep this text clear, two important distinctions must be clarified. The "grid"
refers to an imaginary grid that partitions the world, and the size of said grid is static
everywhere. Meanwhile, a "grid element" or "cell" refers to a singular object, aligned to
the grid, which occupies one or more positions of said grid. Confusingly, the code listings
may refer to a collection of grid elements as "grids", rather than "cells".

First, an actor was created calledGridController, which is the main class that manages
the scene and handles the logic of all grid elements. A constant GRID_RESOLUTION, which
describes the smallest possible size of the grid in Unreal’s map units, was defined with
a value of 64 map units, equivalent to 64 cm. The actor was also given two methods
required by Unreal: BeginPlay which executes when the actor is constructed and Tick
which runs every engine tick (which is a constant value of time). The actor also contains
two important attributes, a list named BurningGridsListwhich contains pointers to all
currently burning cells, and FloorGridsMapwhich maps 2D coordinates to cell pointers.

Another class named GridElem was created, which represents a single cell of the grid.
The definition of the structure is shown in Listing 4.1.

1 typedef struct {

2 int hp; // Health before combusting into fire. If this is zero, the grid is on fire.

3 FVector coord; // The coordinate of the grid

4 double lifetime; // How long this fire will burn for

5 TArray<GridElem*> neighbours; // List of neighbouring grids

6 bool generatedneighbours; // Have the neighbours been generated? (default false)

7 } GridElem;

Listing 4.1: The structure definition for a single grid element

One might wonder why the grid element was written as a struct, rather than as an actor.
This was done because the game might need to handle hundreds of different elements,
thus it was written as a struct to minimize the memory footprint, which in turn would
improve cache performance during iteration.

Lastly, an actor calledFireStarterwas created and placed in the world, responsible for
starting fires in the area during this initial implementation stage. The actor, much like the
GridController class, has the two main methods required by Unreal, but it also contains
a third method OnCollide, which the engine executes when a collision has occurred with
another actor in the world. The actor, during initialisation, is given a sphere collider and
physics are enabled on it. equently, when the game is executed, the FireStarter object
will fall to the ground and collide with the Landscape actor, triggering the OnCollide
method. The OnCollide method searches for the first occurrence of a GridController
actor in the world and executes a method from it called CreateFireAtXYZ, which takes
the collision coordinate as an argument.
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The CreateFireAtXYZmethod starts by aligning the coordinate so that it is centered
with the grid defined by GRID_RESOLUTION. This is shown in the Listing 4.2, where a grid
element’s 𝑋 and 𝑌 values are aligned.

1 FVector pos_aligned = FVector(

2 FMath::Floor(pos.x/GRID_RESOLUTION)*GRID_RESOLUTION + GRID_RESOLUTION/2,

3 FMath::Floor(pos.y/GRID_RESOLUTION)*GRID_RESOLUTION + GRID_RESOLUTION/2,

4 pos.z + GRID_RESOLUTION/2 // No need to align Z, just need to push it up

5 );

Listing 4.2: A sample of code showing how cells are aligned to the grid

The reason that the 𝑍 value is not grid aligned is because doing so would lead to
potential issues with grid visibility, as demonstrated in Figure 4.6(a). The goal was to
have the center of the grid function as the bottom of the fire, such as these could be
correctly aligned with the terrain, as per Figure 4.6(b). The landscape is guaranteed to be
two-dimensional as it was generated from a heightmap, thereby ensuring grids would
not spawn on top of other grids, as you would expect if the map contained caves.

(a) (b)

Figure 4.6: Figure 4.6(a) shows what would happen if the grid elements were aligned to
the grid’s 𝑍. Many elements would end up spawning inside the terrain as they would fail
to spawn in the adjacent position due to not colliding with anything. Figure 4.6(b) shows
the preferred result.

After aligning, a GridElem struct is created with a hp value of zero (since it starts on fire),
generatedneighbours as false, and a lifetime value of GetTime() + FIRE_LIFETIME
(where FIRE_LIFETIME is defined as 10, while GetTime() returns the current time of the
program). The pointer to thisGridElem is addedto theGridController’sBurningGridsList
and FloorGridsMap.

Later, when this implementation is moved over to the fire visualisation tool, the values
of hp and lifetimewill need to be flexible and dependent on the progression of the fire
front polygon. However, these values were left as static constants to make debugging and
performance testing easier.

To perform the logic of the fire advancing and spreading, the grid controller must
iterate through the list of burning cells and generate neighbours, attack them, and remove
elements from the BurningGridsList. The GridController’s Tick function, which
performs this logic, is described in Listing 4.3.
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1 for (GridElem* ge : this->BurningGridsList) {

2 if (!ge->generatedneighbours)

3 this->AttemptSpreadGrid(ge);

4 for (GridElem* nge : ge->neighbours)

5 this->AttackNeighbour(ge, nge);

6 if (ge->hp == 0 && ge->lifetime < GetTime())

7 this->BurningGridsList.Remove(ge);

8 }

Listing 4.3: The main Tick loop of the GridController

The AttemptSpreadGrid method is what handles the generation and assignment of
a cell’s neighbours. It does this by taking the cell’s center coordinate, and adding or
subtracting GRID_RESOLUTION on both the 𝑋 and 𝑌 axis to ensure that each neighbouring
cell is tested. First, the FloorGridsMap is checked to ensure that a grid element already
exists at a given coordinate (the 𝑍 value is irrelevant since the hash map uses two-
dimensional coordinates to perform the mapping). If an element exists at the coordinate,
then it is added to the cell’s neighbours list.

It is important that, when a cell is added to a grid element’s list of neighbours, the
assignment must be done in both directions. This allows us to iterate over a cell’s
neighbours and prevent dangling pointers whenever a cell is removed from the world.
During the assignment, the grid element should check whether the element it wishes to
insert does not already reside within the list.

In the case where a grid element did not already exist, then the area it wishes to
spread to must be tested to ensure that the landscape exists at the given coordinate. An
AABB collision check is performed at this coordinate using the grid element’s shape as a
reference. To successfully do the collision check, the minimum coordinate of the AABB is
subtracted by the element’s height in order ensure that a downward slope would not cause
the grid to miss the landscape, and the maximum coordinate is increased by three times
the grid’s height for a similar reason with upward slopes. The maximum coordinate is
significantly larger to simulate the fact that fires tend to spread faster uphill than downhill,
since the heat from the flame rises.

Figure 4.7 demonstrates how the collision check is used to calculate the position of
a grid element’s Z value on the terrain. It is worth pointing out that despite the grid
elements touching each other on the 𝑋 and 𝑌 plane, this is not guaranteed to happen on
the 𝑍 axis. This was ignored at this point of the implementation, only being corrected
later.

It is not enough to check if a collision occurs. Unreal Engine divides objects into
"Collision Groups" so that they can be easily filtered, and both landscape and foliage must
share collision groups in order for the Procedural Foliage Tool to work properly. So once
a collision is found, the components of the overlapping actors must be checked to confirm
if they contain a Landscape component.
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Figure 4.7: Demonstration of the collision check (in red) performed by the grid (in black),
and the resulting grid (in blue) against a downward and upward slope. If the element
was projected without any height changes in the left example, it would fail to collide with
the terrain due to the grid residing in the air. In the example on the right, the element
would have failed to collide with the edges of the terrain, meaning a collision would not
have been found.

If a collision with a Landscape component is successful, a GridElem is created at the
intersection coordinate, with hp value initialized to FIRE_HP (defined as 10), lifetime as
zero, and the element is added to the FloorGridsMap. Once all neighbouring coordinates
have been tested, the grid element’s generatedneighbours value is set to true in order
to ensure it is not run again, and the method finishes.

The next method in the GridController’s tick function is AttackNeighbour. This
function is relatively straightforward: it checks if the neighbouring cell has hp larger than
zero. If so, then 1 is subtracted from the neighbour, and if its hp now falls to zero, then the
neighbour’s lifetime value is set to GetTime() + FIRE_LIFETIME and the cell is added
to the BurningGridsList attribute.

One interesting aspect in the implementation is the decision to store grid elements
twice, in both a dictionary and a list. This is done because a grid element is inert when its
hp value is nonzero (meaning it is a damaged cell which has not yet ignited), and when
its hp value is zero and its lifetime value has expired (meaning the cell has burnt out).
There is no interest in iterating through these cells, thus any element which is active (on
fire) is placed in the BurningGridsList to reduce the number of iterations necessary by
the GridController.

As it is written right now, every time the Tick function is called by the engine, the cell
will attack its neighbours and spread very rapidly. It is ideal to put a cap on the simulation
speed, thus a NextTick attribute is added to the GridController, a FIRE_TICKTIME
constant is created with a default value of 0.5, and the loop inside the tick function is
wrapped with a timer. This is shown in Listing 4.4.

With this change, if a GridElem only contains one neighbour which is on fire, it will
take five seconds to have its health fully depleted to zero.

To render the cells, one can just iterate through all the elements in the FloorGridsMap
and render a cube with a color, as shown in Listing 4.5.

The rendering code is placed outside of the NextTick check. If it is placed inside, then
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the boxes would only render for a single tick.

1 if (this->NextTick < GetTime()) {

2 this->NextTick = GetTime() + FIRE_TICKTIME;

3 for (GridElem* ge : this->BurningGridsList) {

4 ...

5 }

6 }

Listing 4.4: The main Tick loop of the GridController, now wrapped with a timer

1 for (TPair<FVector2D, GridElem*> pair : this->FloorGridsMap) {

2 GridElem* ge = pair.Value;

3 FColor col = FColor(0, 0, 0);

4 if (ge->hp > 0)

5 col = FColor(0, 255, 0);

6 else if (ge->hp == 0 && ge->lifetime > GetTime())

7 col = FColor(255, 0, 0);

8 DrawDebugBox(ge->coord, FVector(GRID_RESOLUTION)/2, col);

9 }

Listing 4.5: The debug rendering function for grid elements.

With a simple controller class and a grid element structure, a basic fire spreading
system has been implemented. Figure 4.8 shows the progression of the system after
running for twenty seconds.

Figure 4.8: A demonstration of the naive simulation, starting as a single grid and quickly
spreading outwards in all directions.

One of the benefits of keeping the elements aligned to a grid is that it lets this
implementation support multiple fires without any additional work. Placing multiple fire
starters in the map will cause multiple fires to break out, and each one will spread out by
itself. When a burning element attempts to spread to a zone where a separate element
already resides, it simply assigns it as a neighbour and continues without problems.

The last thing worth tackling is adding support for wind. This can be used to force the
fire to trend towards a specific direction, and ensure that a grid element will tend towards
the edges of the fire front polygon. Wind was specified as a single, global 2D vector value
for the entire map.
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If the position of both the attacker and victim grid element is known, a direction
vector can be extrapolated by subtracting both positions and normalizing the vector.
Then, instead of just damaging a grid element by a static value of 1, the damage value is
multiplied by the dot product of the direction vector with the wind vector. If the wind
direction vector is nonzero, and the result of the dot product is positive, then the damage
application can proceed. The fire spreading with a global wind value is shown in Figure
4.9.

Figure 4.9: A demonstration of the fire spreading with the global wind value set to the
static value (1, 0). This causes the fire to spread towards the positive X axis, which is
the right side of this image.

4.3.1 Adding Support for Foliage

Now that a basic simulation was written, the next step was to add support for burning
foliage and other flammable objects. Because these objects exist in three dimensions, it
requires some minor changes to the GridElem struct and to the GridController actor.
First, a second struct was created called ObjectBurn, and its defintion can be seen in
Listing 4.6.

1 typedef struct {

2 FTransform transform; // The transform data of this object

3 TMap<FVector, GridElem*> gelems; // The map of grids

4 OBJType type; // The type of the object

5 void* object; // A pointer to the object being burned

6 } ObjectBurn;

Listing 4.6: The burning object struct definition.

In order to allow for support of burning multiple different types of objects, the
ObjectBurn struct uses a void* along with the enumeration OBJType.

Next, the GridElem struct was modified to add a burnobj attribute (which points to a
ObjectBurn), and the GridController actor had BurningObjectsMap added to it in order
to map 3D coordinates to ObjectBurn’s.
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The only methodwhichrequires changing is theGridController’sAttemptSpreadGrid
method. Instead of checking the 𝑋 and 𝑌 axis only, now the 𝑍 axis must be checked as
well, but only if the cell’s burnobj pointer is not null.

As stated in section 4.3, the components of overlapping objects are checked to ensure
collision with a landscape, so this must obviously be changed to check if a foliage actor
was hit as well. Unfortunately, getting which specific foliage was hit is non-trivial. When
foliage is generated by the Procedural Foliage tool, it creates InstancedFoliageActors
in the world, which contain multiple foliage components, which themselves contain
multiple FoliageInstancedStaticMeshComponent. This inner-most component features
a function for testing box overlaps, and it returns a list of indices of the foliages that
were hit. From that, one can then obtain information about the actual individual foliage
instance.

Once the key of the overlapped foliage instance is known, the transformation of the fo-
liage is obtained, and the instance’s coordinate is checked against the BurningObjectsMap.
If the map entry does not exist with the given coordinate, then it is created and added. Next,
a GridElem is created similar to how it would be on a landscape, but now its burnobj
pointer is assigned to the found/created ObjectBurn and the element is added to the
ObjectBurn’s gelemsmap. The grid element is not added to FloorGridsMap since it does
not belong to the terrain.

Using a map with cell positions comes with a problem, which is the fact that the grid
elements are aligned to the terrain’s Z. This means that the positions of grid elements that
spread to the foliage could differ if they are not aligned in the same way. See Figure 4.10
for a visual demonstration of the problem.

Figure 4.10: The brown rectangle represents a tree trunk (foliage). Grid A will attempt
to create a grid aligned to itself (the red grid), while grid B will attempt to do the same
(the blue grid). Because the only way for the grid to know if a position is occupied is
by checking the projected grid’s center coordinate against an ObjectBurn’s map of grids,
both grids will be created. This will result in multiple overlapping grid elements.

There are two ways to resolve this issue. The first way would be to align the grid
elements that belong to foliage to some global grid. This would work well but would have
a few consequences, namely that two similar foliages placed in different locations could
have vastly different grid shapes, as it is dependent on whether the foliage overlaps the
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boundary between cells. The second solution would be to keep grid elements aligned
to the center of foliage instance itself. The downside of this is that grid elements that
belong to the foliage and grid elements that belong to the landscape might overlap. It
was decided that the second solution would work best, because it could also allow for a
second potential optimisation.

Since foliage meshes do not change, it was interesting to check whether there were
any performance benefits in precalculating all of the possible grid element positions in a
foliage instance. This was tested but ultimately scrapped for two reasons:

1. If all the elements were created at once, the program would hitch due to all the
cell memory allocations for large objects (such as trees, which could fit almost three
hundred grid elements). Hitching would have a significant usability impact in a VR
environment.

2. Precalculating would require foliage meshes to be the same everywhere, this would
mean no rotation or scaling could be applied to the models. This would create a
very unrealistic scene.

Therefore, dynamically calculating the grid element positions was decided to be
the better option, since it would allow for more flexibility, and require less work from
developers integrating this API into the final fire visualisation tool since they would not
need to create the pre-calculated cell position structure for every type of combustible
object placed on the map. The fire simulation, extended to foliage, can be seen interacting
with trees in Figure 4.11.

Figure 4.11: The fire simulation affecting a tree.

The last thing worth discussing when it comes to foliage is regarding how the collision
check is performed to begin with. 3D meshes are composed of many small triangles, and
checking an AABB against every single one to isolate a collision would be computationally
heavy for complex models. Therefore, UE5 attempts to represent the object as a collection
of primitive shapes such as capsules and rectangles.

As can be seen in Figure 4.12, the collision shape does not take into account every
branch of the tree. For a more accurate simulation of fire spreading up close, a more
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Figure 4.12: The conifer model and the collision shape defined automatically by UE5.

accurate collision mesh would be required, which could have not just an impact on the
collision checking of the grid elements, but an overall impact on game performance as
well since the same collision boxes are used for everything that can interact with them in
the game engine.

4.3.2 Adding Support for Inflammables

Lastly, support for checking against inflammable actors and materials would be desir-
able, as in the fire visualisation tool there are structures such as houses and roads placed
on the map which do not combust.

Adding support for inflammable actors is relatively trivial. As discussed in Section
4.3, since Unreal Engine uses collision groups to filter collisions, the same data can be
leveraged here. The developer can define custom collision groups, assign them to objects,
and perform an overlap check against that specific collision group. If the AABB overlaps
with an object in the inflammable collision group during the AttemptSpreadGridmethod,
it is stopped early.

When a collision check is performed against an object, Unreal provides a lot of collision
information, such as the normal vector of the collision, and the physical material that
was hit. Physical materials are attributes given to materials, which are used for object
interaction. One such example is the physical materials being used to decide which
footstep sounds to play when players walk over terrain. One could paint a material
with the inflammable physical material assigned to it on sections of the landscape (for
instance, a rock material which would not combust), and then simply check if the collision
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information responds with the inflammable physical material.
An implementation of the fire spreading system with the inflammable material system

working is shown in Figure 4.13.

Figure 4.13: The fire simulation avoiding an actor given the inflammable collision group
(the cube) as well as an inflammable material (The dirt on the left side). The triangles of
the landscape mesh marked as inflammable are highlighted in cyan.

Due to how materials are implemented in Unreal Engine, there is a noticeable abrupt
rectangular gap in the transition between the flammable and inflammable materials in
Figure 4.13. This is because despite the materials blending together visually, internally
unreal only stores one physical material perquad of the terrain mesh. The only workaround
for this is to have a higher resolution landscape mesh, at the cost of performance and
storage space.

It is worth pointing out that the grid is not necessarily aligned to the quads of the
terrain itself, so there may be situations in which a grid element overlaps both a quad
which contains a flammable physical material and another which does not. In this scenario,
the grid element will choose not to spread to this location.

4.4 Structural Optimisations

With the naïve implementation finished, it was time to refine it. First, a base benchmark
was necessary to compare against, so the simulation was run as-is on a machine with an
AMD Ryzen 7 4800H. The performance testing will be focusing entirely on the performance
of the CPU, thus all rendering of grid elements was disabled.

In order to measure the performance, a static scene was set up with foliages and terrain,
and a fire starter was placed. The fire starter would drop and create a burning grid element,
which would spread outwards. Every 45 seconds, a snapshot would be taken with Unreal
Insights to measure the processing time of the GridController tick in that frame, as well
as the object’s memory usage. The total number of grid elements in memory, as well as
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the number of elements that were burning, was also recorded. The average of 5 tests was
taken and compiled into Table 4.1.

Total Cells Burning Cells Processing Time Memory Usage
648 426 1.42ms 96 940
11 221 1625 3.45ms 1 678 661
28 026 4702 7.83ms 4 192 689
45 746 6966 10.53ms 6 843 601
115 242 10387 17.26ms 17 274 611

Table 4.1: The processing time (of the CPU) for grids, and the memory usage (in bytes). For
90 FPS, the processing time must fall below 10ms. GPU performance was not measured
because it are not relevant to the processing of grids, only rendering.

4.4.1 Eliminating Redundant Cells

The first obvious optimisation that was done to the algorithm was to remove the use
of the burnt grids, because they are taking up significant memory. The reason for the
burnt grids existing is to prevent the burnt grid elements from spreading back towards an
already burnt area. When it comes to integrating the simulation into the fire visualisation
tool, the burnt grids will not be necessary at all as the spread of the grids will be dictated
by the fire front polygon. But for the time being, a simple check can be performed to cull
the majority of burnt grids.

When a grid element burns out, its neighbours are iterated over. If a neighbour grid is
itself burnt out, and all the neighbours of said grid are themselves burned out, then the
neighbour grid can be safely removed. After finishing the iteration, if the grid no longer
contains any neighbours, then itself can also be removed.

The same test was run, with the same methodology, and the results were compiled
into Table 4.2. It is worth pointing out that the timer used real-time, thus it does not take
into account time lost due to hitches or lag when starting the program. This means that
the number of burning grid elements might not match exactly with the previous table,
but using the average of five tests should help even it out.

Total Cells Burning Cells Processing Time Memory Usage
648 426 1.12ms 96 940
6 175 1 729 3.23ms 923 780
27 787 4 729 8.36ms 4 156 935
49 234 6 971 10.21ms 7 113 928
72 025 9 354 16.63ms 10 080 496

Table 4.2: The performance table for grids after removing unnecessary burned objects

As can be seen in the table, the memory usage went down significantly, and as a result
it was possible to have large fires represented with less memory. Of course, this had
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minimal impact on the processing time since the amount of burning grid elements was
left unchanged.

4.4.2 Making Grid Elements into Actors

The next potential performance improvement was to decouple grid logic from the
GridController. Instead of the controller actor performing the fire spreading logic on
each grid element, one could make grid elements into actors with their own Tick function,
and only have it use the controller to retrieve neighbours. The idea behind doing this
came from the observation that UE5 tends to defer heavy operations on its data structures
(such as deletions), and the documentation claims that "many actors can be updated in
parallel if they’re in the same group"[17].

This was implemented, and tested using the same methodology described in Section
4.4. The results of the test can be seen in Table 4.3.

Total Cells Burning Cells Processing Time Memory Usage
628 462 1.22ms 102 230
6 312 1 693 3.71ms 976 248
26 789 4 638 8.56ms 4 316 455
47 323 6 479 10.27ms 7 312 239
71 353 9 623 16.82ms 10 814 423

Table 4.3: The performance table for grid elements split into separate actors

The performance numbers showed that the change had little impact on the execution
of each grid element’s logic with a slight increase in memory usage. However, in large
scenes the performance would stutter more due to actor creation and deletion being a
much heavier operation. This is likely because the engine requires more bookkeeping
regarding the managing of actors and events, compared to simply calling malloc and
free on some small C structs.

4.4.3 Switching from Maps to Trees

One big problem with the usage of a dictionary is the fact that when the grid combina-
tion and division is implemented, using the center coordinate of the grid element as the
key value will no longer work. A significantly large grid element will occupy the position
of many cells, thus a redundant key value pair will be needed for every one. Quadtrees
are optimized for storing and searching arbitrarily sized rectangles, making it the obvious
choice.

UE5 provides a quadtree data type, however the provided implementation was not
very flexible (for instance, it lacked the ability to manually traverse the tree). It was decided
that writing a custom one would also be more efficient because it was possible to leverage
the fact that elements are always aligned to a grid. By design quadtrees will split the space
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they represent evenly, which could result in many elements being unable to be stored in
children nodes, significantly impacting search performance. Though it is worth pointing
out that this optimisation will not benefit scene with large grid elements which overlap
multiple boundaries. Figure 4.14 demonstrates the problem visually.

Figure 4.14: The red elements, because they reside on the borders of the children nodes,
they must instead be placed on the root node (in pink), which would reduce the search
performance of the quadtree.

Because UE5 is a complex program, it was decided that the quadtree implementation
would be easier to write and debug on a smaller visual application, and then ported to
Unreal once finished. Since the data structure would need to be written in C++, it was
that decided that the implementation would be written with a library that the author of
this dissertation was already familiar with: wxWidgets.

The quadtree implementation should be as efficient as possible:

1. During searches and removals, the quadtree tests which quadrant the element most
likely belongs inside and searches it first

2. When an element is inserted, a pointer to the child node is returned so that removals
can be done in 𝑂(1).

3. As previously mentioned, the quadtree is aligned to the global grid, so elements
crossing tree edges should be reduced.

4. When an element is removed, the quadtree’s structure is unchanged because cleanup
is deferred. In the scenario where an element moves, it must be removed and
reinserted into the quadtree. By deferring the cleanup, the case where the children
nodes are destroyed and recreated right after can be minimized. This also results in
stutters being reduced since the quadtree is not required to recursively destroy all
its children in a single step.

The implemented test program is shown in Figure 4.15.
Bringing the implementation over to UE5 was relatively trivial, the only thing which

required changing was switching from the standard library’s std::vector over to Unreal’s
TArray.
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Figure 4.15: The implemented quadtree running in a wxWidgets application. The quadtree
used a maximum capacity value of 4.

To test the performance of the new data structure, a test was devised where 100,000,
500,000, and 1,000,000 randomly generated grid elements (with varying sizes and positions)
were created. Then, all elements were inserted into both a TMap and quadtree, and the time
to perform all insertions was measured. Then, a selection of random points equivalent to
the number of elements were tested, as well as randomly generated rectangles for area
tests, and time time taken for the entire operation to be performed was recorded. For
testing searches in an area, the quadtree test used rectangles with length/width between
0 and 1000, while the map used 0 and 15 (any larger and the time would explode due to
the operation being 𝑂(𝑛2)). Finally, all elements were removed from the structures, and
the processing time for the entire operation was recorded. Five total tests were performed,
and the average processing time for each one of the data structure’s methods was recorded.
Finally, the times were normalized based on the number of actions that were performed
(for instance, the average times for 500,000 elements was divded by 5 to be easier to
compare to the times of 100,000 elements), and compiled into Table 4.4.

100 000 Elements 500 000 Elements 1 000 000 Elements
TMap Quadtree TMap Quadtree TMap Quadtree

Insert 16ms 42ms 31ms 57.4ms 33.8ms 82.4ms
Find (Point) 12ms 97ms 10.8ms 91.8ms 12.4ms 93.6ms
Find (Area) 881ms 657ms 2 719ms 886.6ms 6 117ms 1 463.1ms
Remove 11ms 6ms 18.6ms 12.2ms 20.2ms 14.9ms

Table 4.4: Comparison of operations on a TMap versus the implemented Quadtree.

One more optimisation needed to be done to the quadtree implementation, which is
to figure out the optimal CAPACITY value which will cause the quadtree to subdivide. This
was tested in Unreal by inserting 1 million elements and recording the time taken for the
whole operation. The average of 5 tests was compiled for each test, and the performance
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table 4.5 was the result, with the final value of 25 being chosen.

Capacity Insert Find (Point) Find (Area) Remove
5 804ms 999ms 20 279ms 101ms
10 1 032ms 956ms 16 338ms 114ms
15 796ms 902ms 15 810ms 134ms
20 593ms 901ms 14 766ms 150ms
25 551ms 920ms 15 008ms 155ms
30 653ms 970ms 16 391ms 164ms
50 618ms 958ms 16 746ms 166ms
100 526ms 1 546ms 22 987ms 144ms

Table 4.5: Comparison of quadtree performance for 1 million entries based on the CAPACITY
value. While in a real world scenario the quadtree of the simulation will have clustered
data, the points were inserted at random locations to force more recursion (for a worst
case scenario).

Once the quadtree was fully implemented and tested to be working, the next step was
to also implement an octree. Since an octree is just a quadtree but with an extra dimension,
the implementation was relatively trivial as it was just a matter of copying the quadtree
implementation and replacing the usage of FBox2D to FBox, as well as adding a few more
lines of code to handle the 𝑍 axis division.

Next, the data types in the GridController’s FloorGridsMap and ObjectBurn’s
gelems had to be replaced, with the former being renamed to FloorGridsQT. Iterat-
ing the quadtree’s elements for rendering now had to be done recursively instead of using
a single for loop. While less efficient, the rendering code is merely for debugging purposes
and will not be used in the fire visualisation tool.

The constructor of the quadtree requires that the user specify the boundary of the root
node. Because the landscape is static, it would be beneficial to automatically compute the
quadtree boundary from it. Unfortunately, UE5 provides limited documentation on its
landscape calculations, both on the documentation pages and in source code comments.
As a result, the size of the quadtree must be passed to the GridController’s constructor,
otherwise a warning will be thrown during game execution. he attempt to dynami-
cally calculate the quadtree bounds was left commented out in the GridController’s
constructor.

One last optimisation can be done to the code as a result of the quadtree. Previously,
to find the neighbouring elements, it was required to check each coordinate around the
element by iteratively looking at all neighbour coordinates, one by one, as shown in Listing
4.7.

1 int startz = (ge->objburn == NULL) ? 0 : -1;

2 for (int z = startz; z <= 1; z++) {

3 for (int y = -1; y <= 1; y++) {

4 for (int x = -1; x <= 1; x++) {

5 if (x == 0 && y == 0 && z == 0)
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6 continue;

7 FVector testpos = FVector(

8 ge->coord.X + GRID_RESOLUTION*x,

9 ge->coord.Y + GRID_RESOLUTION*y,

10 ge->coord.Z + GRID_RESOLUTION*z);

11 GridElem* found = this->FloorGridsMap.Find(testpos);

12 if (found != NULL)

13 ...

14 }

15 }

16 if (ge->objburn == NULL)

17 break;

18 }

Listing 4.7: The old neighbour searching algorithm.

This is incredibly costly as the map would need to be iterated over 8 (in the case of
2D iterations) or 26 times (in the case of 3D iterations). The searching can be improved
from 𝑂(𝑛3) to 𝑂(log 𝑛) by simply performing a single search in the quadtree, as shown in
Listing 4.8.

1 FBox gebox = GridElem_GetFBox(ge);

2 FBox testbox = gebox;

3 TArray<GridElem*> found;

4

5 testbox.ExpandBy(GRID_RESOLUTION);

6 if (ge->objburn == NULL)

7 this->FloorGridsQT->FindElementsInRect(FBox2D(testbox), &found);

8 else

9 ge->objburn->gelems->FindElementsInCube(testbox, &found);

10

11 found.Remove(ge);

12 for (GridElem* nge : found) {

13 if (!GridElem_GetFBox(nge).Intersect(gebox))

14 ...

15 }

Listing 4.8: The new neighbour searching algorithm.

4.5 Grid Grouping

With the grid elements now stored in a better data structure, the next step is to optimize
the scene further by implementing a system where grids will choose to combine with one
another depending on the camera distance.

4.5.1 Combination

It was decided, for simplification and optimisation reasons, that only burning grids
would concern themselves with performing joins/divisions. Three modifications were

49



CHAPTER 4. IMPLEMENTATION

done to the GridElem struct, the first being that the coordwas changed to be the minimum
coordinate of the grid instead of the center, the second was the addition of an integer
lod attribute to the structure, and the third was the addition of a vector size value
which represents the number of grids which the grid element expands towards in a
given direction (for example, a size value of (1, 0, 0) means that the grid occupies two
GRID_RESOLUTIONworth of space on the x axis).

When iterating over the burning elements list, the distance of the element from the cam-
era is calculated, then the distance is divided by a constant value of GRID_RESOLUTION*4
and stored in the lod attribute of the grid element. Two new methods were created, and
were named Combine_GridElements and Separate_GridElements respectively. These
were added to the GridController, and called after a grid element has performed an
attack on all its neighbours.

In order for a grid to combine, its neighbour must fulfil the following prerequisites:

1. The burnobj pointer in both elements must be equal. This is to prevent landscape
grid elements from combining with foliage elements, as well as different foliage
objects from having their grid elements combine with one another.

2. The neighbour must have its hp value set to 0 to ensure it is on fire, and its lifetime
value must be larger than GetTime() to ensure it is not burnt out.

3. The sum of the grid and its neighbour’s unscaled width and height values divided
by four must be smaller than its lod value

4. The bounding box generated by the combination of both grid elements must not
overlap any other grid element

If these prerequisites are met, then the two grid elements can be combined. This is as
simple as setting the grid element’s coord value to the bounding box’s minimum value,
setting the size value to the bounding box’s maxmimum subtracted by the minimum
divided by GRID_RESOLUTION, combining the hp and lifetime values of both elements,
and then deleting the now redundant neighbour element.

One last tweak is necessary to the combined grid, which is that its 𝑍 value needs
to be adjusted. One problem that was common during testing as the grid grid element
expanded in size was that it would commonly end up in scenarios where the element was
buried under the landscape mesh.

To adjust the height, the element performs a line trace on the center coordinate, as well
as on all four of its corners so that it can obtain the minimum and maximum 𝑍 value of
the terrain. First, the grid element’s centre is adjusted to be tangent with the landscape,
and then its height is adjusted, given the known minimum and maximum coordinates.
The grid element will always have a height of at least GRID_RESOLUTION, but its height
does not need to be aligned to a grid (since the landscape is, in essence, two-dimensional).
It is also worth pointing out that if the grid element belongs to a foliage object, then its
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minimum and maximum coordinate must be aligned to the 3D grid, thus cannot have
variable height.

Because the size of the grid element has changed, it needs to be removed and re-inserted
into the quadtree/octree. However, because the GridElement stores within it a pointer
to the tree child node it belongs to, it is not necessary to perform the insertion from the
top of the tree. Since the grid element has increased in size, it will never be inserted into
the children of the current tree node (as the children will always be smaller), therefore we
can insert the element back into the same node or into one of the parent nodes (which are
guaranteed to always be bigger). This bottom-up approach is much more efficient than
traversing the tree all the way from the top.

4.5.2 Separation

With the grid combination implemented, the next step was to implement the grid
separation. For a grid element to seperate, it must fulfill the following requirements:

1. The grid element cannot have all of its size components equal to zero, as a grid
element cannot be smaller than GRID_RESOLUTION.

2. The sum of the grid element’s unscaled width and height divided by two must be
smaller than its lod value.

Separating the grid element is relatively trivial, as it is an incredibly similar operation
to what is done in the quadtree/octree implementation: divide the space equally in the
center, and align the final split location to the grid. If one of the quadrants/octants of the
division yields a value of zero, then no grid is created there.

After separation, the grid elements must also have their height values readjusted to
prevent overly tall and skinny elements from being created. Figure 4.16 demonstrates the
problem visually:

Figure 4.16: On the left figure, the red cells form the blue bounding box. The middle
figure shows that the center coordinate of the combined result is no longer tangent with
the landscape, thus it must be moved upwards as shown in the right figure.

The 𝑍 height adjustment is performed the same way as during the cell combination.
Also similar to the cell combination algorithm, there is no need to fully traverse the
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quadtree/octree to reinsert the element and the new elements that were formed as a result
of the division. Since the grid element is now smaller, it is guaranteed to fit in the same
tree node it was inside of, or in one of its children.

One problem arises from the use of large grid elements: defining how the fire will
spread. It would not make sense for a large grid element to generate small neighbours,
because sufficiently large cells would try to create hundreds of really small ones, causing
stutters and increasing memory usage significantly. Instead, it was decided that the better
option would be to have the large grid elements attempt to spread into large grid elements.
Figure 4.17(a) demonstrates the undesired neighbour generation algorithm, while Figure
4.17(b) demonstrates the preferred method.

(a) (b)

Figure 4.17: Figure 4.17(a) shows the undesired grid spreading method, while Figure
4.17(b) shows the preferred alternative.

This presents a challenge, what should happen if a large grid element attempts to
spread into an area that is already occupied by other grid elements? In the case of there
already existing burning elements, it would not make sense to remove them as that would
be the equivalent to extinguishing a fire. Furthermore, if unburnt cells are present with a
depleted hp value, it wouldn’t be productive to replace it with a new cell with replenished
hp. Therefore, it would be wise to make holes in the cell so that those already existing
elements are not replaced.

Subtracting a box from another is relatively simple, and the algorithm is outlined in
Listing 4.9.

UE5’s FBox class provides an Overlap()method to retrieve the overlapping rectangle,
but one can be easily written by getting the maximum value 𝑋 and 𝑌 component of the
minimum coordinate of the two rectangles, and the minimums of the maximum coordinate.
Those four values give the minimum and maximum value of the intersection rectangle. If
the subtraction of the smallest maximum coordinate with the largest minimum coordinate
gives a value smaller or equal to zero on either the 𝑋 or 𝑌 component, the rectangles do
not intersect.

1 // Get the overlapping box between the two

2 FBox2D intersection = subtrahend.Overlap(minuend);

3
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4 // Edge case: no overlap

5 if (intersection.GetSize().X == 0 ||

6 intersection.GetSize().Y == 0)

7 return;

8

9 // Min is top left corner of the rectangle, Max is the bottom right

10 // ------------------

11 // | A |

12 // |----------------|

13 // | C | Hole | D |

14 // |----------------|

15 // | B |

16 // ------------------

17

18 int rectAHeight = intersection.Max.Y - minuend.Max.Y;

19 if (rectAHeight > 0)

20 NewBoxes.Insert(FBox2D(FVector2D(minuend.Min.X, minuend.Min.Y),

21 FVector2D(minuend.Max.X, minuend.Min.Y + rectAHeight)));

22

23 int rectBHeight = minuend.Max.Y - intersection.Max.Y;

24 if (rectBHeight > 0)

25 NewBoxes.Insert(FBox2D(FVector2D(minuend.Min.X, intersection.Max.Y),

26 FVector2D(minuend.Max.X, intersection.Max.Y + rectBHeight)));

27

28 // The same logic applies to C and D

29 // 3D is no different, we just need two more if checks to handle the Z value

Listing 4.9: The rectangle subtraction algorithm.

To simplify debugging and testing, like with quadtrees, the box cutting algorithm was
implemented in the wxWidgets application before being ported over to UE5, shown in
Figure 4.18.

Figure 4.18: The rectangle splitting algorithm working in the wxWidgets application.

It is worth mentioning that this implementation also works on burnt cells, but they were
not brought up because they will not be present in the fire visualisation tool. Generated
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grid elements will have their hp value equal to FIRE_HPmultiplied by the number of cells
which the element takes up in the grid. Similarly in terms of damage, cells will multiply
the damage by the number of cells they occupy.

One aspect that has not been covered yet regarding the combination and splitting is its
effect on a grid’s knowledge of its neighbours. In the scenario of a grid combination, the
list of neighbours of the grid can be easily fixed by combining both lists (and removing the
since-deleted grid/duplicates), but the scenario of the grid splitting it would be a lot more
complicated. Furthermore, when a grid is combined with another, it needs to generate
new neighbours with the same size, which could potentially modify the neighbours of
nearby grids.

Currently, the only way to either regenerate grids or to force a recheck of neighbours
would be to modify the generatedneighbours boolean of a GridElem, so it was decided
to replace it with a neighbourflags value instead that can store whether a grid needs
to check for neighbours and when a grid needs to generate neighbours. In the scenario
where a combination happens, the resulting grid needs to both regenerate and recheck
neighbours. In the scenario where a grid is split, it only needs to recheck for neighbours.
Finally, when a grid is generating new neighbours which will overlap an already burning
cell, said cell will have its recheck neighbours flag cleared.

In the AttemptSpreadGridmethod, a grid element sets its NEIGHBOURFLAG_GENERATED
flag to true. Outside of the method, a new one was added called FindGridneighbours
which is used to find neighbours and enable the NEIGHBOURFLAG_FOUND flag.

When a grid element has grown sufficiently large, it is possible that it will be larger
than any foliage it attempts to overlap. In this scenario, the grid element which is to be
created and stored in the ObjectBurnwill have a size equal to the foliage’s bounding box,
rounded to the nearest GRID_RESOLUTION to ensure it can be evenly divided if the camera
gets too close.

The last point worth mentioning about the grid LOD algorithm is that, in its current
state, the GridController is doing a lot of heavy operations per grid element in a tick: it
needs to generate neighbours, find neighbours, attack neighbours, check and perform a
separation, and check and perform a combination. The controller is spending quite a lot
of time idle and then performing everything on every grid element every FIRE_TICKTIME
seconds. This led to a lot of stuttering, so it was better to defer these steps.

The controller now performs two steps: The first is a a logic step where grid elements
generate, find, and attack neighbours. The second is a optimisation step, where grid ele-
ments combine andseparate. The logic step occurs once at the startof everyFIRE_TICKTIME,
while the optimisation step happens up to 8 times before the next FIRE_TICKTIME. The
reason that it does multiple optimisations per FIRE_TICKTIME is because one pass is not
enough to fully optimize a group of grids. Figure 4.19 illustrates why.
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Figure 4.19: In order for the collection of grids on the left figure to be optimal, they need
at least two ticks to combine.

4.5.3 Difficulties

One problem that was run into a lot was the simulation’s tendency to combine elements
into very skinny ones, which in turn would create skinny neighbours, combine with them,
and form even skinnier elements. These unwanted grid elements are shown in Figure
4.20.

Figure 4.20: A screenshot showing the skinny grids problem

There were multiple different attempts at solving this issue. The first solution that
was attempted was to put a limit on how big a grid could extend in a given direction. For
instance, a grid element’s width could not be larger than thrice the height. While this
solution did fix elements getting too long, it had the unintended side effect of sometimes
preventing optimal grid elements from forming in multiple steps, and this led to lots
of small interlocking grids in a brick wall pattern which could not combine because the
bounding box between them overlapped other grids. This is shown visually in Figure
4.21.

The second method that was attempted was to force the grid elements to alternate the
merging direction. For example, in the first step, a grid element would only merge with
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Figure 4.21: A screenshot showing the interlocking grids problem. Despite the camera
being sufficiently distant from the grids to allow them to combine, they refuse to due to
the bounding box of attempted combinations overlapping with other grid elements. This
problem is especially exacerbated when the camera pulls close to a set of grid elements
and forces them to divide, since the division might not be fully symmetrical.

elements to its left or right, but then after combining it would now only combine with
elements above or below it. This also, once again, resulted in situations where lots of small
grids should join, but ultimately did not.

One of the main reasons that grid elements would end up forming these long pieces
was due to how the the damage calculation was being performed. The grid would use
its entire area as a multiplier for the damage application on its neighbours, which is
counterintuitive as the area of contact between the two elements can be very small. Figure
4.22 demonstrates the problem visually.

Figure 4.22: The contact area between the red and blue elements is only one grid, while the
green element shares 8 grids of contact. Because of the larger contact area, the red element
should be impacting more damage on the green one than the blue one. But because of the
logic of the current implementation, the red element imparts the same damage on both,
and during the combination step tends to combine with the blue element first.

To fix this, it was required to figure out the edge of contact between two grid elements
by using the dot product of the two grid’s center points, and then multiplying the damage
by the number of grids shared between the contact edge, rather than the whole shape’s
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size.
While the change to the damage calculation did fix the generation of very skinny grid

elements, it did not solve the interlocking grids problem. The only way to resolve that
was to modify point 4 of the prerequisites of the grid combination algorithm described
in section 4.5.1. Instead of outright failing the merge if another grid element is present in
the bounding box of two grids, instead the combination can be allowed if the overlapping
grid element would have an area smaller than the combination. If that was the case, the
overlapping grid element(s) can be subtracted and split into smaller ones (or outright
removed) in a fashion similar to what was described in the final grid spreading algorithm.
This results in one grid element usually becoming large enough to always dominate over
the others.

4.6 Grid Generation from Geometry

With the grid simulation in somewhat working order, the last thing required for
porting the grid system over to the fire visualisation tool was to implement a method
of converting an arbitrary fire front polygon into a collection of grids. This is a similar
problem to the process of rasterization in 3D graphics, except in this scenario it is ideal to
represent the fire front polygon as accurately as possible with the least amount of grids.

Because the only thing which interests us is the fire front, we can very easily create
bounding boxes which enclose every edge of the polygon to represent it. Since our
rectangles are aligned to a grid, the polygon’s vertices will also need to be aligned. In
the case of overlapping rectangles, subtracting one from another will fix that. This works
for both concave and convex polygons, as demonstrated in Figure 4.23. Said polygon
generation algorithm was also ported over to the Unreal project, and uses the polygon
normals to create burnt elements behind the grid elements, to ensure that the fire does
not spread backwards.

The obvious problem with this approach is that the boxes will also overlap many grid
positions that do not belong to the fire front. Of course, when the camera is sufficiently
far away, this won’t be a big problem, but as the camera approaches, we can divide the
grid evenly and eliminate the ones which do not intersect any edge of the polygon. This
process can be repeated until a satisfactory resolution is achieved. Said partitioning is
shown in Figure 4.24.

This has all been implemented into the test wxWidgets program, but whether the
implementation works as expected is yet to be seen, as it needs to be ported over to the
fire visualisation tool.

In theory, to implement this API into the fire visualisation tool, when the grids are
generated from the polygon, the grid elements need to store the list of edges that they are
intersecting. An efficient way to do this is to store the edges of the polygon in a quadtree,
so that searches can be done in 𝑂(log 𝑛) as opposed to 𝑂(𝑛). When a subdivision occurs,
the rectangle checks each edge in its list, and eliminates edges which no longer intersect. If
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Figure 4.23: A basic fire front rectangle coverage algorithm, working for both a concave
and convex shape, shown implemented in wxWidgets.

Figure 4.24: Demonstration of the further subdivision of the grids that represent the
polygon.

the list is empty, the rectangle is removed. Checking if a line segment intersects a rectangle
is done efficiently using the Cohen–Sutherland algorithm [6]. And of course, as outlined
in Section 3.1.2, the polygon might have an increase or decrease in the number of edges,
which might complicate the implementation in this manner. So the grid elements must
find the nearest edge of the future fire-front polygon and modify its data accordingly.
This potential integration of the API has been documented in the project’s README to
potentially facilitate the integration process.

4.7 Simulation Culling

It is inefficient to perform simulations on grid elements which are not visible to the
camera, so finding a method to cull them is a good idea. Because our world is projected
onto a rectangle (our computer screen), we can figure out the shape it projects onto the
scene and then test the grid elements against it.

In order for a point in world space coordinates to be transformed to screen space
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coordinates, the operation defined by Equation 4.1 is performed on it.

𝑣𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 ×𝑉𝑐𝑎𝑚𝑒𝑟𝑎 × 𝑣𝑤𝑜𝑟𝑙𝑑 (4.1)

Where:

• 𝑣𝑠𝑐𝑟𝑒𝑒𝑛 is the vector of the 3D point in screen space

• 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 is the camera projection matrix

• 𝑉𝑐𝑎𝑚𝑒𝑟𝑎 is the camera view matrix

• 𝑣𝑤𝑜𝑟𝑙𝑑 is the vector of the point in world space

To obtain the camera frustum vertices in view space, the equation is solved for 𝑣𝑤𝑜𝑟𝑙𝑑,
as shown on Equation 4.2.

𝑣𝑤𝑜𝑟𝑙𝑑 = 𝑃𝑐𝑎𝑚𝑒𝑟𝑎𝑉
−1
𝑐𝑎𝑚𝑒𝑟𝑎 × 𝑣𝑠𝑐𝑟𝑒𝑒𝑛 (4.2)

We replace 𝑣𝑠𝑐𝑟𝑒𝑒𝑛 with the 8 points that represent the corners of 3D screen space,
and we divide the resulting 𝑣𝑤𝑜𝑟𝑙𝑑 by the 𝑊 component to go from homogeneous to 3D
coordinates.

With the shape of the view frustum obtained, we can calculate the minimum bounding
box of it and use it to return the list of burning grid elements that are visible in the quadtree.

This gives us the list of landscape elements that are burning, but not the elements that
belong to foliages. This, however, is resolved by having a second quadtree containing the
bounding boxes of ObjectBurn’s. The ability to retrieve grid elements from a rectangle
and cube was added to the GridController.

With this, in theory, the BurningGridsList is no longer required since testing the
quadtrees (𝑂(log 𝑛)) is more efficient than iterating through the entire list and testing the
grids against the screen frustum (𝑂(𝑛)).

Since the actual culling has not been implemented into the final program, one can only
speculate regarding how it would work in the fire visualisation tool. One of the main
questions one might have regarding the culling of objects is: "What if a user spends a
long time not looking at grid elements (say, for an hour) and attempts to look back at the
scene?". Obviously, since these grids are not being updated anymore, their simulation
will be very far behind.

To solve this, theoretically, when a grid element is simulating we store the GetTime()
value in an attribute called lastseen. If we view a grid element who’s lastseen value is
too long (say, one minute), we delete the grid element and force it to be regenerated from
the fire front polygon. This obviously means that there will be inconsistencies between
what the user last saw and what was expected if the simulation were to proceed normally.
However, this is a compromise that must be taken in the scenario that we are rendering a
potentially huge forest fire in real-time.
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Worth discussing is also the fact that foliages are still being simulated, even when the
grid element that surrounds it is gigantic. Consider an area completely overlapped by one
large grid element, where there are thousands of tiny grass objects. In the implementation
discussed in section 4.3 and 4.4, the overlap test will return all found foliage objects and
generate grids from them. The solution to this is to calculate the area of the bounding
box of the foliage model, and compare it against the bounding box of the grid element. If
the area of the bounding box of the foliage model is smaller than an eighth of the grid
element’s, then the generation of the foliage’s ObjectBurn can be skipped. This foliage
culling feature has been implemented into the GridController logic, however. A note
was left in the repository’s README discussing the possible integration of this API into
the fire visualisation tool.

4.8 Summary

In summary, the following components were implemented:

1. The existing fire visualisation tool was ported to UE5, but it was unable to be properly
tested.

2. A terrain import tool was written in Python, to allow the conversion of GIS DEM
into heightmaps supported by UE5.

3. A micro scale fire-spreading system was implemented.

a) The micro scale simulation supports burning of three dimensional objects,
while ignoring inflammable objects and materials

b) The micro scale simulation is optimized by grouping cells together, essentially
also turning in into a less-accurate macro-scale simulation

c) Functions for testing grid elements in an area were implemented, but are
currently not actually used by the program as a functional system would rely
on the polygon data to be retrieved from the fire visualisation tool. The potential
use of these methods were documented in the repository’s README.

4. A test program was written in wxWidgets to demonstrate the creation grid elements
from fire front polygons, and said functions were ported to Unreal.

a) Since the polygon data is currently not dynamically retrieved from the server,
the functions are used by the program, only provided as a basic API for creating
a single fire front. Said API does not take an evolving fire front into account.

b) The potential extensions were documented in the repository’s README.

While we were unfortunately unable to integrate the micro scale API with the existing
fire visualisation tool, our solution acts as a working proof-of-concept, and provides a
strong foundation to assist future work with this task.
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5

Evaluation

This section evaluates the implemented architecture, looking at its performance, bot-
tlenecks, and overall flexibility. The previous chapter focused on the CPU side of the
implementation, and justified design decisions based on their impact on performance.
This section will investigate and evaluate the solution under the major bottleneck, the
GPU. The program was tested on a machine with an NVIDIA RTX 2060 6GB.

5.1 Performance Testing

As has been highlighted in section 2.1, VR is an incredibly performance intensive ap-
plication, and thus the simulation is much more likely to run into performance constraints
as a result of the graphics processor. So spending a great deal of time reducing the number
of active grid elements on screen, which would be emitting particle effects, was necessary.
The GPU being the performance bottleneck was found to be clear during the development
of the API.

Figure 5.1 shows a snippet from Unreal Insights. The top graph starts green, signifying
that the scene took under 16.6ms to render, but eventually starts showing a downgrade
in performance (signaled by the yellow bars). A lag spike was highlighted, and focused
on the bottom of the tool. The highlighted section of the program took 26.6ms to render a
frame (equivalent to 37 FPS). The graph shows that the GridController loop, (which was
confirmed to have around two thousand elements on fire) took 2.2ms to process. The CPU
spent 13ms waiting for the GPU to finish its rendering task, highlighting that the GPU
was the bottleneck.

Before the actual testing of the simulation could take place, it was first necessary to
set up the scene to work in VR. By default, Unreal’s graphics settings are incredibly
demanding, which resulted in the scene struggling to run above 10 FPS. The following
tweaks had to be done:

• All ray-tracing features were disabled.

• Lumen Reflections were switched to Screen Space Reflections.
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Figure 5.1: A graph from Unreal Insights.

• The engine’s renderer was changed from a deferred renderer to a forward renderer.

• Bloom, HDR, and dynamic shadows were disabled.

With these changes, the scene shown in Figure 5.2 was able to run at an average of 11.1
ms, the value recommended for VR, but just barely. The performance would fluctuate
between 12 and 10 milliseconds, thus the next step was to reduce the resolution of the VR
screen.

By default, SteamVR, which is the program that interfaces the VR hardware with the
software running on the machine, uses a resolution of 150% (equivalent to 1852x2056 for
each eye). Reducing it down to 100% (1512x1680) allowed the scene to run stably at 10 ms.
However, to give the program the best chance it could get, the scene was also tested at 80%
(1352x1500), and at 50% (1068x1188). These yielded an average frametime of 9 ms and 8
ms respectively. Figure 5.3 shows the performance graphs of the test scene at different
resolutions.

Because only 50% scaling was able to keep the scene fully stable, it was kept for all
subsequent tests despite the impacted visuals.

Next, the scene was tested with the grid elements being rendered using debug cubes,
to simulate as light a rendering load as possible. Because these tests are supposed to
provide a worst-case scenario, the scene was tested with cell grouping deactivated. It took
about one thousand on-screen cells to increase the frame rendering time past the 11.1 ms
threshold, as shown in Figure 5.4.

Next, it would make sense to simulate the scene using more accurate visuals, so a
free asset pack was acquired from the Unreal Marketplace called M5 VFX Vol2. Fire and
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Figure 5.2: The baseline scene, being rendered in VR.

Figure 5.3: These graphs show the scene running at 100%, 80%, and 50% resolution
respectively. The graph is split into three sections, with the bottom third representing
frame times under 11.1 ms, and the top third representing frame times over 33.3 ms. Green
bars represent frames which were able to be produced with the 11.1 ms limit, while yellow
bars represent frames which did not, thus the software was required to reproject the
previous frame and smooth the transition (to avoid noticeable frame drops).

Flames[29]. This effects pack was chosen because it was free, had fire particles of high
quality, had good reviews, and contained both Niagara and Cascade1 versions of the
particle systems, which would allow the performance of both to be compared.

Rendering particle systems actually provides a slight performance boost to the CPU,
because rendering debug cubes required iterating through each burning grid element
and manually calling the render function. With particle systems, we are only required to
create the system when the grid element ignites, and destroy it when the grid element
runs out of fuel. The engine handles everything else.

To accomplish this, a pointer to the particle system was added in the GridElem struct,
and a method to create and destroy particle systems for specific grid elements was added
to the GridController. These methods are run when the grid element changes state, is

1The two particle systems provided in Unreal, described in Section 2.8.2
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Figure 5.4: The scene running with the simulation enabled. The grid elements are being
rendered using debug cubes.

destroyed, or is resized. Since Unreal does not provide an easy method for scaling the
visuals of the particle systems at runtime without modifying them to have dynamic user
variables, it was decided to keep it easy and just destroy and respawn a particle system
but with a size change. Figure 5.5 shows the particle system running for a grid element
with size 1, compared to a grid element of size 10.

Figure 5.5: The fire particles, rendering with size 1 and size 10 respectively.

The fire particle effect themselves were composed of multiple parts: a tall flame
animation, some small flames that stretch out across the floor, smoke, sparks, view
distortion from heat haze, and a dynamic light. Table 5.1 shows the number of particle
systems emitters the scene handled before taking longer than 11.1 ms to render a frame,
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Niagara Cascade
Default 24 31
No Lights 88 103
Only Smoke and Flames 103 112
Only Tall Flames 436 1052

Table 5.1: Table showing the number of grid elements emitting particles before the
performance dropped below the 90 FPS recommended for VR.

with different parts disabled. These different quality settings are also demonstrated in
Figure 5.6.

From the table, it can be concluded that for simple particle effects, Cascade is the
much superior option for the application. It also shows that in a worst case scenario of all
particle systems being rendered on screen, the program managed to handle a thousand
grid elements at once. What the table also lets us conclude is that having high-quality
particles is possible for fires which are happening close to the user, while less quality ones
can be used for distant grid elements.

It is possible that more performance can be squeezed by tweaking Unreal Engine
settings and modifying the particle system further, but ultimately the importance of the
grid grouping algorithm was demonstrated. By keeping the number of visible grids in
the scene to a minimum, the quality of the particles can be increased. The program is
more likely to be bottlenecked by the GPU than by the CPU, meaning the simulation
implementation has been shown to be quite efficient. Of course, better performance can
be achieved with a better graphics card, as the 2060 is a mid-range card from the year 2019.
But using a more powerful (and expensive) card ends up contradicting one of the goals of
the fire visualisation tool, which is that it can run on inexpensive hardware.

5.2 Flexibility

Lastly, it is worth discussing the flexibility and documentation of the implementation.
Since the project is ultimately going to be merged into a larger tool by someone else, it
was imperative that the final codebase be easy to extend and modify.

The GridControllerwas designed from its inception to have lots of its functionality
split into several methods, so that when the time comes to port it over to the fire visu-
alisation tool, it could be done without much hassle. Each stage of a GridElem’s life is
handled by a specific private method, in case anything needs to be modified in the final
tool. A collection of public methods, completely unused by the program developed in the
dissertation, are also available to facilitate both the integration of the controller as well as
test its functionality.

The full API of the GridController, including the methods which were left unused
in the final program, is described in Listing 5.1.
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Figure 5.6: The fire particles, at full quality, smoke and flames only, and tall flames only
respectively. Screenshots were taken once the performance had degraded past 16.6 ms.
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1 class UNREALPROJECT_API AGridController : public AActor

2 {

3 private:

4 void FindGridNeighbours(GridElem* ge);

5 void GenerateGridNeighbours(GridElem* ge);

6 void AttemptSpreadGrid(GridElem* ge, FBox box, TArray<GridElem*>* created);

7 GridElem* CreateGridAtXYZ(FVector pos, ObjectBurn* object = NULL, FVector size=

↩→ FVector::One());

8 bool AttackGrid(GridElem* ge, GridElem* attacker);

9 void GridBecomeFire(GridElem* ge);

10 void GridBecomeBurnt(GridElem* ge);

11 bool Combine_GridElements(GridElem* ge1, GridElem* ge2);

12 bool Separate_GridElements(GridElem* ge, TArray<GridElem*>* newburning);

13 void FireParticles_Enable(GridElem* ge);

14 void FireParticles_Disable(GridElem* ge);

15

16 public:

17 void CreateFireAtXYZ(FVector pos, FVector size = FVector::One());

18 void CreateFireFrontFromLines(TArray<FVector>* polygon);

19 void CreateFireFrontFromPolygon(TArray<FVector>* polygon);

20 FBox GetCameraFrustum(UCameraComponent* camera);

21 void FindLandscapeGridsInRect(FBox2D rect, TArray<GridElem*>* found);

22 void FindObjectInRect(FBox2D rect, TArray<ObjectBurn*>* found);

23 void FindAllElementsInCube(FBox cube, TArray<GridElem*>* found);

24 void RemoveGrid(GridElem* ge);

25 void RemoveGridAtXY(FVector2D pos);

26 };

Listing 5.1: The class definition of the GridController, showing the different methods
provided by the API.

While the GridElem itself is not a class, a collection of extra functions were developed
to facilitate the retrieval of key information about it, manipulate it, and convert between it
and UE5’s internal FBox structure. These functions also serve a second purpose, which is
to minimize the changes needed to the program if a future user of the API would need to
modify the GridElem struct. This API is shown in Listing 5.2.

1 GridElem* CreateGridElem(FVector pos, int firehp, ObjectBurn* object = NULL, FVector size=

↩→ FVector::One());

2 ObjectBurn* CreateObjectBurn(OBJType type, FTransform transform, void* object);

3

4 double GridElem_GetLeft(GridElem* ge);

5 double GridElem_GetRight(GridElem* ge);

6 double GridElem_GetUp(GridElem* ge);

7 double GridElem_GetDown(GridElem* ge);

8 double GridElem_GetBottom(GridElem* ge);

9 double GridElem_GetTop(GridElem* ge);

10 double GridElem_GetWidth(GridElem* ge);

11 double GridElem_GetLength(GridElem* ge);
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12 double GridElem_GetHeight(GridElem* ge);

13 double GridElem_GetWidth_Unscaled(GridElem* ge);

14 double GridElem_GetLength_Unscaled(GridElem* ge);

15 double GridElem_GetHeight_Unscaled(GridElem* ge);

16 FVector GridElem_GetMin(GridElem* ge);

17 FVector GridElem_GetMax(GridElem* ge);

18 FVector GridElem_GetArea(GridElem* ge);

19 FVector GridElem_GetArea_Unscaled(GridElem* ge);

20 FVector GridElem_GetCenter(GridElem* ge);

21

22 void GridElem_MakeNeighbour(GridElem* a, GridElem* b);

23 void GridElem_RemoveNeighbour(GridElem* a, GridElem* b);

24 void GridElem_ClearNeighbours(GridElem* ge);

25

26 bool GridElem_IsDamaged(GridElem* ge);

27 bool GridElem_IsOnFire(GridElem* ge, UWorld* world);

28 bool GridElem_IsBurnt(GridElem* ge, UWorld* world);

29

30 // Shape conversion and manipulation

31 FBox2D FBox2DFromGridElem(GridElem* ge);

32 FBox FBoxFromGridElem(GridElem* ge);

33 GridElem* GridElemFromFBox2D(FBox2D bound, GridElem* reference);

34 FBox FBoxFromObjectBurn(ObjectBurn* obj);

35 FBox FBoxAlignedToObj(ObjectBurn* obj, FBox box);

36 void AdjustGridElemHeight(UWorld* world, GridElem* ge);

37 BoxSubtractStatus BoxSubtract(FBox minuend, FBox subtrahend, TArray<FBox>* results, bool

↩→ is2D=false);

38

39 // Unreal helper functions

40 TArray<AActor*> CollidedWithTerrain(UWorld* world, TArray<FOverlapResult> overlaps);

41 bool TraceHitInflammableMaterial(UWorld* world, FHitResult hit);

42 TArray<Combustibles> CollidedWithCombustible(FVector pos, FCollisionShape colshape, TArray

↩→ <FOverlapResult> overlaps);

43 bool TerrainZAtXY(UWorld* world, FVector2D pos, double* out, double tracez=0, double

↩→ tracesize=DBL_MAX);

Listing 5.2: The list of helper methods for retrieving data from GridElems, as well as
various helper functions.

Also worth pointing out is that because the ObjectBurn struct stores the object it is
affecting as a void*, it allows the fire simulation to be extended to affect many different
types of objects, and all that needs to be extended is some small switch statements inside
the CollidedWithCombustible and AttemptSpreadGrid methods. This is documented
in the repository’s README.

Lastly, to further facilitate testing and debugging, a single file named FireConfig.h
was created which features an array of constant values to enable or disable functionality
of the grid controller, modify the simulation, or enable various debug features. Every
constant in this file contains a small comment which explains what the constant does.
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One aspect of the API that could use improvement is that it is, unfortunately, not drag
and drop and requires minor tweaking on a per-project basis. Specifically, the bounds of
the map need to be set on the grid controller object once placed in the map, as there were
difficulties getting the class to dynamically calculate them. These bounds are necessary,
because they are used to generate the quadtree.

To assist incoming developers, the API is extensively documented, with explanations
avaiable both in the Git repository and in code comments, to help future integration with
fire visualisation tool. While the API provides is a simple fire spreading simulation, it is
written in a way to allow the grid elements themselves to adapt to the requirements of the
fire front polygon in the final tool.
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6

Conclusion and Future Work

This chapter consolidates the discussions and conclusions of the work that was devel-
oped in this dissertation. We conclude with a list of possible extensions and enhancements.

6.1 Final Overview

The main objective of this dissertation was to improve the visuals of a macro-scale
forest fire data visualisation tool, by allowing the fire front to be observed at the micro
scale.

Thanks to an implementation of a naïve fire spreading system, it is possible to have
very large fires represented by a small number of grid elements. While following really
simple rules, the system allows for a plethora of interesting and realistic phenomena to be
simulated, such as the possibility of fires spreading from two separate objects, the ease of
fires regarding the climbing slopes versus descending, and the inability of fire to spread
to inflammable materials. The cell grouping system and provides a method for spatially
partitioning the simulation, allowing the controller to skip unnecessary calculations and
optimize the scene for what the user is observing.

While the ability to take a set of lines directly from the MACFIRE server and integrate
it with the dynamic simulation from the grid controller was not able to be implemented
in the given timeframe, a potential solution to the problem was shown, and a suite of
functions were written to facilitate the integration with the fire visualisation tool. While
the culling methods might result in incongruences with what a user observed in a previous
location, the overall macro-scale fire should be unaffected.

The grid controller system provides a solid foundation so that further graphical
improvements can be done to the fire visualisation tool. With the provided simulation
culling methods, as well as leveraging functionality already present in the API, a developer
can implement very realistic fires with smoke and sparks spreading in front of the viewer
while keeping the simulation and performance impact light for distant flames.

From the evaluation of the performance of both the CPU and GPU, the overall usability
of the fire visualisation tool should be minimally impacted as long as the way in which
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particles are rendered is done strategically. The tests showed that the controller can render
thousands of flames at once while rendering fires of varying quality, so higher quality
particles should be used for close-proximity embers. Virtual Reality is, ultimately, a very
performance intensive medium, and care must be taken if one wishes to have a realistic
looking scene.

6.2 Limitations and Future Work

When comparing the finished project to the original stated objectives, the key point
that remains is the integration of the project with the existing fire visualisation tool. This
point is the natural next step for the project.

Additionally, there are a number of possible optimisations and improvements which
can be done to the existing system:

1. Unreal Engine provides methods for taking advantage of multi-core processors.
It would be interesting to attempt a parallelization of the GridController’s main
tick loop, as it currently sequentially iterates through each burning grid element to
perform its necessary logic. The challenge of this step would be that the neighbour
states might not be fully synchronized (for instance, one grid element can ignite a
damaged cell, but another grid element that shares the same neighbour might not
have enough strength to do so), so the merging of data must be done carefully.

2. Currently, the system was only tested with a single particle system. It would be
interesting to extend this further by having multiple different particle systems for
different situations a grid element might find itself in. For instance, a grid element
which is attempting to climb foliage (such as a tree) could have a slightly warped
appearance to the direction it is climbing. Fire particles could also be tilted in order
to look like they are being pushed by the global wind value.

3. UE5 allows for the dynamic modification of assets. Since the grid element is a box,
one can query the materials which intersect it, and modify them accordingly. For
instance, the leaves on trees could be made invisible by querying the triangles that
are overlapped by a grid element, and the triangles belonging to a tree’s trunk can
be swapped for a charred texture. By also leveraging the ability to send custom data
to material shaders, one could also implement smoothing between texture changes.

This dissertation approached the problem by developing a micro-simulation of a fire
with individual grid elements performing their own discrete logic. However, another
equally valid approach could be performed taking the polygon of the fire front, placing
it on the world, and then dividing the space in quarters. Said spaces would be further
subdivided as the difference between the fire front, the burnt areas, and the unburnt areas
starts to converge. This would result in a partition not too dissimilar to a quadtree. Then,
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as data is queried from the server regarding the fire front’s next position, the partitions
are modified to correlate with the new polygon. The key difference between this approach
is that the cells do not behave individually to converge towards the fire front’s polygon
(so no simulation is occurring), rather they are always forcibly changed as the data from
the fire front polygon comes in.

Lastly, it would also be interesting to provide a selection of different graphics settings
and particle systems, and then perform a collection of user tests to query which graphical
options are preferred.
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